tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong magnet? Holders with magnets in airtight, solid enclosure are excellent for use in difficult weather, including snow and rain see more...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, exploring underwater areas, or finding space rocks made of metal more...

Enjoy delivery of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships tomorrow

SM 18x275 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130276

GTIN: 5906301812784

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

275 mm

Weight

0.01 g

608.85 with VAT / pcs + price for transport

495.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
495.00 ZŁ
608.85 ZŁ
price from 10 pcs
445.50 ZŁ
547.97 ZŁ

Want to talk magnets?

Pick up the phone and ask +48 888 99 98 98 if you prefer get in touch through request form the contact form page.
Lifting power and appearance of magnets can be reviewed on our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

SM 18x275 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x275 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130276
GTIN
5906301812784
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is the heart of every magnetic filter used in industry. Its task is to separate metal filings from the transported material. High magnetic induction allows catching the finest iron particles.
The construction is based on a sealed stainless steel housing. Inside, there is a stack of strong neodymium magnets in a special configuration. Such construction ensures resistance to corrosion, water, and acids.
Metal filings stick very firmly to the surface, so cleaning requires strength or a trick. We recommend taping the filings and peeling them off together. For easier maintenance, consider a system with a cleaning sleeve.
Magnetic induction measured in Gauss (Gs) determines the magnetic flux density on the rod surface. The economical version handles large metal pieces well. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We fulfill custom orders for bars matched to your machine. You can choose a mounting method compatible with your project. We ensure fast execution of special orders.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous field intensity, neodymium magnets offer the following advantages:

  • They retain their full power for nearly 10 years – the loss is just ~1% (according to analyses),
  • Their ability to resist magnetic interference from external fields is notable,
  • Because of the reflective layer of gold, the component looks high-end,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • The ability for precise shaping or adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Key role in new technology industries – they are utilized in hard drives, electric motors, diagnostic apparatus along with high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of NdFeB magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment, especially when used outside, we recommend using waterproof magnets, such as those made of non-metallic materials,
  • Limited ability to create precision features in the magnet – the use of a housing is recommended,
  • Safety concern related to magnet particles may arise, if ingested accidentally, which is crucial in the protection of children. It should also be noted that minuscule fragments from these magnets may interfere with diagnostics if inside the body,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Maximum lifting capacity of the magnetwhat affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • in normal thermal conditions

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the lifting capacity is smaller. In addition, even a slight gap {between} the magnet and the plate lowers the load capacity.

Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

If you have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Magnets made of neodymium are highly susceptible to damage, leading to their cracking.

Magnets made of neodymium are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Caution!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98