e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in solid and airtight steel enclosure are perfect for use in challenging weather, including snow and rain more...

magnets with holders

Holders with magnets can be used to facilitate production, underwater exploration, or locating meteors made of ore check...

Shipping always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x275 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130276

GTIN: 5906301812784

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

275 mm

Weight

0.01 g

608.85 with VAT / pcs + price for transport

495.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
495.00 ZŁ
608.85 ZŁ
price from 10 pcs
445.50 ZŁ
547.97 ZŁ

Want to talk magnets?

Give us a call +48 888 99 98 98 if you prefer let us know via form our website.
Force along with appearance of a neodymium magnet can be checked using our our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 18x275 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x275 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130276
GTIN
5906301812784
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. Due to this, it is possible to precisely remove ferromagnetic particles from different substances. An important element of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be targeted. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic particles. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food industry to clear metallic contaminants, such as iron fragments or iron dust. Our rods are made from acid-resistant steel, AISI 304, suitable for use in food.
Magnetic rollers, often called magnetic separators, are employed in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the stronger the magnet, the more effective. Nevertheless, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are short. Otherwise, when the magnet is thick, the force lines are longer and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a saltwater contact, type AISI 316 steel is recommended due to its exceptional corrosion resistance.
Magnetic bars are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding high temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their immense pulling force, neodymium magnets offer the following advantages:

  • Their strength remains stable, and after approximately 10 years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is among the best,
  • By applying a bright layer of gold, the element gains a modern look,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
  • Key role in cutting-edge sectors – they are used in data storage devices, electric motors, clinical machines and sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall strength,
  • They lose power at elevated temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is significant in the health of young users. Moreover, tiny components from these assemblies can disrupt scanning when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what affects it?

The given holding capacity of the magnet means the highest holding force, determined in ideal conditions, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

Key elements affecting lifting force

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet and the plate lowers the lifting capacity.

We Recommend Caution with Neodymium Magnets

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets jump and touch each other mutually within a distance of several to almost 10 cm from each other.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are extremely delicate, they easily break as well as can become damaged.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Safety rules!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98