SM 18x275 [2xM5] / N42 - magnetic separator
magnetic separator
Catalog no 130276
GTIN: 5906301812784
Diameter Ø [±0,1 mm]
18 mm
Height [±0,1 mm]
275 mm
Weight
0.01 g
608.85 ZŁ with VAT / pcs + price for transport
495.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us
+48 22 499 98 98
alternatively contact us using
request form
our website.
Weight as well as form of a magnet can be estimated using our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
SM 18x275 [2xM5] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous field intensity, neodymium magnets offer the following advantages:
- They retain their attractive force for around 10 years – the drop is just ~1% (based on simulations),
- They remain magnetized despite exposure to magnetic surroundings,
- The use of a polished nickel surface provides a eye-catching finish,
- They possess strong magnetic force measurable at the magnet’s surface,
- With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their application range,
- Wide application in modern technologies – they serve a purpose in data storage devices, electric drives, healthcare devices along with sophisticated instruments,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall resistance,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
- Possible threat related to magnet particles may arise, when consumed by mistake, which is significant in the family environments. It should also be noted that minuscule fragments from these magnets can hinder health screening after being swallowed,
- In cases of tight budgets, neodymium magnet cost may be a barrier,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, calculated in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Determinants of lifting force in real conditions
The lifting capacity of a magnet is influenced by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, whereas under shearing force the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate reduces the load capacity.
We Recommend Caution with Neodymium Magnets
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnetic are characterized by their fragility, which can cause them to crumble.
Neodymium magnetic are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Caution!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.
