e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase powerful magnet? Magnet holders in airtight, solid enclosure are excellent for use in challenging weather, including snow and rain check...

magnets with holders

Magnetic holders can be applied to facilitate production, exploring underwater areas, or finding meteorites made of metal see more...

Enjoy delivery of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

SM 18x275 [2xM5] / N42 - magnetic roller

magnetic separator

catalog number 130276

GTIN: 5906301812784

5.0

diameter Ø

18 mm [±0,1 mm]

height

275 mm [±0,1 mm]

max. temperature

≤ 80 °C

608.85 PLN gross price (including VAT) / pcs +

495.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
495.00 PLN
608.85 PLN
price from 5 pcs
470.25 PLN
578.41 PLN
price from 9 pcs
445.50 PLN
547.97 PLN

Don't know what to buy?

Call us tel: +48 888 99 98 98 or get in touch via form on the contact page. You can check the mass and the shape of neodymium magnets in our magnetic mass calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 18x275 [2xM5] / N42

Characteristics: magnetic separator 18x275 [2xM5] / N42
Properties
Values
catalog number
130276
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
18 mm [±0,1 mm]
height
275 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
0.01 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M5] wewnętrzne
biegunowość
obwodowa - 12 nabiegunników
indukcja magnetyczna
~ 5 400 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
Properties
Values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
40-42
BH max MGOe
energy density [Min. - Max.]
318-334
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. As a result, it is possible to precisely remove ferromagnetic elements from other materials. An important element of its operation is the use of repulsion of magnetic poles N and S, which causes magnetic substances to be collected. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are built from acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with a neodymium magnet embedded in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the better. But, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be short. On the other hand, when the magnet is thick, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel exhibits the best resistance due to its outstanding corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it is suggested {to clean them regularly from contaminants, avoid extremal temperatures up to 80°C, and to clean them regularly, avoiding temperatures up to 80°C. The rollers our rollers have an IP67 waterproof rating, so if they are not sealed, the magnets inside may oxidize and lose their strength. Roller inspections are recommended to be conducted every two years. Care should be taken as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it can wear out, which, in turn, may lead to issues with the magnetic rod becoming unsealed and product contamination. The effective operating range of the roller equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Significant importance in the industry of new technologies – find application in computer drives, electric motors, medical apparatus or very advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard arising from small pieces of magnets pose a threat, if swallowed, which is particularly important in the aspect of protecting young children. It's also worth noting that small elements of these products have the potential to hinder the diagnostic process when they are in the body.

Be Cautious with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are noted for being fragile, which can cause them to shatter.

Neodymium magnets are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If the joining of neodymium magnets is not controlled, at that time they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should have them extremely firmly.

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98