tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all magnesy in our store are in stock for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase strong neodymium magnet? Magnet holders in solid and airtight steel casing are excellent for use in variable and difficult weather, including during snow and rain more...

magnets with holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or locating space rocks from gold more...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGW 29x8 [M4] GW / N38 - magnetic holder rubber internal thread

magnetic holder rubber internal thread

Catalog no 160305

GTIN: 5906301813637

5

Diameter Ø [±0,1 mm]

29 mm

Height [±0,1 mm]

8 mm

Weight

18 g

Load capacity

6.4 kg / 62.76 N

8.61 with VAT / pcs + price for transport

7.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
7.00 ZŁ
8.61 ZŁ
price from 50 pcs
6.58 ZŁ
8.09 ZŁ
price from 150 pcs
6.16 ZŁ
7.58 ZŁ

Do you have a hard time selecting?

Call us +48 888 99 98 98 otherwise contact us by means of inquiry form the contact section.
Parameters and shape of a magnet can be tested on our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

UMGGW 29x8 [M4] GW / N38 - magnetic holder rubber internal thread

Specification/characteristics UMGGW 29x8 [M4] GW / N38 - magnetic holder rubber internal thread
properties
values
Cat. no.
160305
GTIN
5906301813637
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
29 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
18 g [±0,1 mm]
Load capacity ~ ?
6.4 kg / 62.76 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

They operate thanks to a powerful magnetic force that holds massive objects, up to multiple kilograms – depending on the size of the magnet used. They are used in the car manufacturing sector, construction, advertising, or warehousing, where they serve well for both permanent and mobile attachment of components.
No! Magnetic holders are not recommended for people with heart implants, as the strong magnetic field could disrupt their function. For these individuals, we suggest using non-magnetic holders — we offer two such types in our range.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetism, neodymium magnets have these key benefits:

  • They do not lose their strength nearly ten years – the reduction of power is only ~1% (according to tests),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for tailored forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Key role in new technology industries – they are utilized in HDDs, electric motors, healthcare devices along with sophisticated instruments,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to wet conditions can oxidize. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
  • Possible threat related to magnet particles may arise, if ingested accidentally, which is crucial in the protection of children. Moreover, tiny components from these devices have the potential to disrupt scanning if inside the body,
  • Due to the price of neodymium, their cost is considerably higher,

Maximum holding power of the magnet – what contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, measured in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

What influences lifting capacity in practice

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, however under shearing force the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are known for being fragile, which can cause them to shatter.

Neodymium magnets are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

  Neodymium magnets should not be around youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Neodymium magnets bounce and clash mutually within a radius of several to around 10 cm from each other.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Be careful!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98