UMGGW 29x8 [M4] GW / N38 - magnetic holder rubber internal thread
magnetic holder rubber internal thread
Catalog no 160305
GTIN: 5906301813637
Diameter Ø [±0,1 mm]
29 mm
Height [±0,1 mm]
8 mm
Weight
18 g
Load capacity
6.4 kg / 62.76 N
8.61 ZŁ with VAT / pcs + price for transport
7.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Give us a call
+48 22 499 98 98
or contact us via
form
the contact page.
Force as well as shape of neodymium magnets can be analyzed using our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
UMGGW 29x8 [M4] GW / N38 - magnetic holder rubber internal thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They have stable power, and over around ten years their performance decreases symbolically – ~1% (according to theory),
- They show strong resistance to demagnetization from outside magnetic sources,
- By applying a bright layer of silver, the element gains a sleek look,
- Magnetic induction on the surface of these magnets is very strong,
- With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the design),
- With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Significant impact in modern technologies – they are utilized in data storage devices, electromechanical systems, clinical machines or even high-tech tools,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of neodymium magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall durability,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
- Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
- Possible threat related to magnet particles may arise, if ingested accidentally, which is notable in the health of young users. Additionally, tiny components from these products can interfere with diagnostics once in the system,
- Due to a complex production process, their cost is relatively high,
Maximum magnetic pulling force – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, determined in a perfect environment, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in real conditions – factors
The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.
Notes with Neodymium Magnets
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
It is essential to maintain neodymium magnets out of reach from children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or even a fracture.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnetic are highly fragile, they easily fall apart as well as can crumble.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Safety precautions!
In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.