SM 25x100 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130287
GTIN: 5906301812807
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
100 mm
Weight
0.01 g
246.00 ZŁ with VAT / pcs + price for transport
200.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Give us a call
+48 22 499 98 98
otherwise let us know through
contact form
our website.
Strength as well as appearance of magnets can be verified on our
modular calculator.
Same-day processing for orders placed before 14:00.
SM 25x100 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- Their power is durable, and after approximately ten years, it drops only by ~1% (according to research),
- Their ability to resist magnetic interference from external fields is impressive,
- Because of the lustrous layer of gold, the component looks aesthetically refined,
- The outer field strength of the magnet shows advanced magnetic properties,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
- With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Wide application in new technology industries – they find application in HDDs, rotating machines, medical equipment as well as other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall robustness,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
- Health risk related to magnet particles may arise, if ingested accidentally, which is important in the protection of children. Additionally, small elements from these magnets have the potential to hinder health screening after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting capacity of the magnet – what affects it?
The given strength of the magnet represents the optimal strength, determined in the best circumstances, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- at room temperature
Key elements affecting lifting force
In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.
Handle with Care: Neodymium Magnets
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Neodymium magnets will bounce and touch together within a distance of several to almost 10 cm from each other.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are extremely fragile, they easily crack as well as can crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Keep neodymium magnets away from youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Warning!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.
