tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our offer. Practically all magnesy in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for fishing F400 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in solid and airtight steel enclosure are perfect for use in variable and difficult climate conditions, including during rain and snow see more...

magnetic holders

Holders with magnets can be applied to improve production processes, underwater exploration, or searching for meteors made of ore check...

Enjoy shipping of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x100 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130287

GTIN: 5906301812807

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

246.00 with VAT / pcs + price for transport

200.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
200.00 ZŁ
246.00 ZŁ
price from 15 pcs
190.00 ZŁ
233.70 ZŁ
price from 25 pcs
180.00 ZŁ
221.40 ZŁ

Not sure what to buy?

Pick up the phone and ask +48 888 99 98 98 alternatively send us a note via request form the contact section.
Weight along with form of neodymium magnets can be tested on our magnetic calculator.

Order by 14:00 and we’ll ship today!

SM 25x100 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x100 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130287
GTIN
5906301812807
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. Due to this, it is possible to precisely remove ferromagnetic particles from different substances. An important element of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be attracted. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in the food sector for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rods are built from acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, often called magnetic separators, are used in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with neodymium magnets placed in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more effective. Nevertheless, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are short. By contrast, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For creating the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel is recommended thanks to its outstanding corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their attractive force for almost 10 years – the loss is just ~1% (according to analyses),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • The use of a mirror-like silver surface provides a refined finish,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for precise shaping as well as adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Wide application in advanced technical fields – they find application in hard drives, electromechanical systems, medical equipment as well as other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall durability,
  • They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Health risk from tiny pieces may arise, when consumed by mistake, which is crucial in the health of young users. It should also be noted that tiny components from these magnets may hinder health screening after being swallowed,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Maximum holding power of the magnet – what affects it?

The given strength of the magnet represents the optimal strength, measured in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • in normal thermal conditions

What influences lifting capacity in practice

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.

Safety Precautions

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Neodymium magnets are highly fragile, they easily break as well as can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Warning!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98