SM 25x100 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130287
GTIN: 5906301812807
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
100 mm
Weight
0.01 g
246.00 ZŁ with VAT / pcs + price for transport
200.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Contact us by phone
+48 22 499 98 98
or contact us by means of
contact form
through our site.
Lifting power as well as shape of magnetic components can be checked on our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
SM 25x100 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense magnetic power, neodymium magnets offer the following advantages:
- They do not lose their strength around 10 years – the reduction of power is only ~1% (based on measurements),
- They are extremely resistant to demagnetization caused by external magnetic sources,
- The use of a mirror-like nickel surface provides a refined finish,
- Magnetic induction on the surface of these magnets is very strong,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
- Significant impact in cutting-edge sectors – they are used in data storage devices, electric motors, clinical machines or even technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them useful in compact constructions
Disadvantages of NdFeB magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
- Safety concern from tiny pieces may arise, in case of ingestion, which is crucial in the family environments. Additionally, miniature parts from these magnets can disrupt scanning after being swallowed,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum magnetic pulling force – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, measured under optimal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Key elements affecting lifting force
The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet and the plate reduces the load capacity.
Precautions with Neodymium Magnets
Neodymium magnets are extremely fragile, leading to shattering.
Magnets made of neodymium are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets far from children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Do not bring neodymium magnets close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If joining of neodymium magnets is not under control, then they may crumble and also crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Safety rules!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.
