e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. Practically all magnesy on our website are available for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for fishing F300 GOLD

Where to purchase very strong neodymium magnet? Magnetic holders in airtight, solid steel casing are perfect for use in difficult weather conditions, including during rain and snow read...

magnetic holders

Holders with magnets can be applied to enhance production processes, underwater exploration, or locating space rocks made of ore see...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x100 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130287

GTIN: 5906301812807

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

246.00 with VAT / pcs + price for transport

200.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
200.00 ZŁ
246.00 ZŁ
price from 13 pcs
190.00 ZŁ
233.70 ZŁ
price from 22 pcs
180.00 ZŁ
221.40 ZŁ

Looking for a better price?

Contact us by phone +48 22 499 98 98 otherwise drop us a message using our online form the contact form page.
Lifting power and structure of a neodymium magnet can be tested on our online calculation tool.

Order by 14:00 and we’ll ship today!

SM 25x100 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x100 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130287
GTIN
5906301812807
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. As a result, it is possible to efficiently separate ferromagnetic elements from different substances. A fundamental component of its operation is the repulsion of magnetic poles N and S, which enables magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in food production to clear metallic contaminants, including iron fragments or iron dust. Our rollers are built from acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, otherwise magnetic separators, are used in food production, metal separation as well as recycling. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of a neodymium magnet anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the more efficient it is. Nevertheless, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines are more compressed. Otherwise, when the magnet is thick, the force lines are longer and reach further.
For making the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is recommended due to its outstanding anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetism, neodymium magnets have these key benefits:

  • Their strength is maintained, and after approximately 10 years, it drops only by ~1% (theoretically),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • By applying a bright layer of silver, the element gains a clean look,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Wide application in modern technologies – they serve a purpose in hard drives, electric motors, diagnostic apparatus along with sophisticated instruments,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is significant in the context of child safety. Moreover, small elements from these magnets have the potential to disrupt scanning if inside the body,
  • Due to the price of neodymium, their cost is considerably higher,

Handle with Care: Neodymium Magnets

 It is important to keep neodymium magnets out of reach from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Magnets made of neodymium are particularly fragile, which leads to shattering.

Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98