e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. All magnesy neodymowe on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for water searching F400 GOLD

Where to purchase very strong magnet? Magnetic holders in solid and airtight steel enclosure are excellent for use in challenging weather conditions, including snow and rain more...

magnetic holders

Magnetic holders can be used to improve manufacturing, exploring underwater areas, or finding space rocks from gold read...

We promise to ship your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x100 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130287

GTIN: 5906301812807

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

246.00 with VAT / pcs + price for transport

200.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
200.00 ZŁ
246.00 ZŁ
price from 15 pcs
190.00 ZŁ
233.70 ZŁ
price from 25 pcs
180.00 ZŁ
221.40 ZŁ

Hunting for a discount?

Give us a call +48 22 499 98 98 or let us know via inquiry form through our site.
Parameters and appearance of a magnet can be checked on our online calculation tool.

Same-day shipping for orders placed before 14:00.

SM 25x100 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x100 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130287
GTIN
5906301812807
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. As a result, it is possible to precisely remove ferromagnetic particles from other materials. A key aspect of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be targeted. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic particles. If the cans are ferromagnetic, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food industry to clear metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, often called cylindrical magnets, find application in food production, metal separation as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the more effective. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be more compressed. On the other hand, when the magnet is thick, the force lines will be longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, AISI 316 steel exhibits the best resistance thanks to its exceptional corrosion resistance.
Magnetic bars stand out for their specific arrangement of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other devices that often use complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, you should cleaning after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Magnetic field measurements should be carried out every two years. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their immense strength, neodymium magnets offer the following advantages:

  • They do not lose their even during around 10 years – the loss of strength is only ~1% (based on measurements),
  • They protect against demagnetization induced by external magnetic influence very well,
  • The use of a polished gold surface provides a smooth finish,
  • They have very high magnetic induction on the surface of the magnet,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • The ability for accurate shaping or adjustment to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Key role in new technology industries – they are used in hard drives, electric drives, diagnostic apparatus or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them useful in compact constructions

Disadvantages of NdFeB magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall strength,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Health risk due to small fragments may arise, especially if swallowed, which is important in the family environments. Furthermore, small elements from these devices may interfere with diagnostics after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, assessed in the best circumstances, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Magnet lifting force in use – key factors

The lifting capacity of a magnet is determined by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets made of neodymium are incredibly delicate, they easily break as well as can become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets may crack or crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should have them extremely firmly.

Exercise caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98