AM szekla [M10] - magnetic accessories
magnetic accessories
Catalog no 080267
GTIN: 5906301812463
Weight
118 g
Load capacity
320 kg / 3138.13 N
4.92 ZŁ with VAT / pcs + price for transport
4.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 22 499 98 98
alternatively send us a note using
request form
through our site.
Force and structure of magnetic components can be analyzed using our
online calculation tool.
Same-day shipping for orders placed before 14:00.
AM szekla [M10] - magnetic accessories
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They do not lose their power around 10 years – the reduction of power is only ~1% (theoretically),
- Their ability to resist magnetic interference from external fields is among the best,
- The use of a mirror-like gold surface provides a smooth finish,
- They have very high magnetic induction on the surface of the magnet,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- The ability for precise shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
- Wide application in new technology industries – they serve a purpose in HDDs, electromechanical systems, healthcare devices or even technologically developed systems,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall resistance,
- They lose strength at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can rust. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
- Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is important in the health of young users. Furthermore, small elements from these devices may interfere with diagnostics once in the system,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum magnetic pulling force – what it depends on?
The given pulling force of the magnet means the maximum force, measured under optimal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- in normal thermal conditions
Practical lifting capacity: influencing factors
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate lowers the lifting capacity.
Handle Neodymium Magnets Carefully
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets should not be in the vicinity youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnetic are especially delicate, resulting in their breakage.
Neodymium magnets are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will jump and also contact together within a distance of several to around 10 cm from each other.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Pay attention!
To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.
