MW 9x3 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010108
GTIN: 5906301811077
Diameter Ø [±0,1 mm]
9 mm
Height [±0,1 mm]
3 mm
Weight
1.43 g
Magnetization Direction
↑ axial
Load capacity
1.49 kg / 14.61 N
Magnetic Induction
343.55 mT
Coating
[NiCuNi] nickel
1.132 ZŁ with VAT / pcs + price for transport
0.920 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Give us a call
+48 888 99 98 98
if you prefer get in touch using
request form
the contact form page.
Specifications along with shape of magnetic components can be verified using our
power calculator.
Order by 14:00 and we’ll ship today!
MW 9x3 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as nickel, to shield them from external factors and prolong their durability. Temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent holding force, neodymium magnets have these key benefits:
- They retain their attractive force for around ten years – the drop is just ~1% (according to analyses),
- Their ability to resist magnetic interference from external fields is notable,
- By applying a reflective layer of silver, the element gains a sleek look,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- With the option for customized forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Key role in modern technologies – they are used in HDDs, rotating machines, diagnostic apparatus along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in miniature devices
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- Limited ability to create complex details in the magnet – the use of a housing is recommended,
- Potential hazard from tiny pieces may arise, especially if swallowed, which is notable in the protection of children. It should also be noted that minuscule fragments from these assemblies have the potential to interfere with diagnostics once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, assessed under optimal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- with vertical force applied
- under standard ambient temperature
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, however under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a small distance {between} the magnet’s surface and the plate lowers the lifting capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are extremely delicate, they easily break as well as can crumble.
Neodymium magnetic are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
It is essential to maintain neodymium magnets out of reach from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Exercise caution!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.
