tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our offer. All magnesy on our website are available for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight and durable steel enclosure are ideally suited for use in variable and difficult climate conditions, including snow and rain see...

magnetic holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or searching for space rocks made of metal read...

Order always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 9x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010108

GTIN: 5906301811077

5

Diameter Ø [±0,1 mm]

9 mm

Height [±0,1 mm]

3 mm

Weight

1.43 g

Magnetization Direction

↑ axial

Load capacity

1.49 kg / 14.61 N

Magnetic Induction

343.55 mT

Coating

[NiCuNi] nickel

1.132 with VAT / pcs + price for transport

0.920 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.920 ZŁ
1.132 ZŁ
price from 700 pcs
0.865 ZŁ
1.064 ZŁ
price from 2800 pcs
0.810 ZŁ
0.996 ZŁ

Need help making a decision?

Call us now +48 22 499 98 98 otherwise get in touch via contact form the contact section.
Weight along with shape of magnets can be calculated using our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

MW 9x3 / N38 - cylindrical magnet

Specification/characteristics MW 9x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010108
GTIN
5906301811077
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
9 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
1.43 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.49 kg / 14.61 N
Magnetic Induction ~ ?
343.55 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 9x3 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed ordinary ferrite magnets. Thanks to their strength, they are frequently used in products that require powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet designated MW 9x3 / N38 and a magnetic lifting capacity of 1.49 kg has a weight of only 1.43 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the site for the current information as well as promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain risk. Because of their strong magnetic power, they can attract metallic objects with significant force, which can lead to damaging skin and other surfaces, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as gold, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical neodymium magnet N50 and N52 is a powerful and highly strong metal object designed as a cylinder, featuring strong holding power and broad usability. Competitive price, fast shipping, stability and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They do not lose their power approximately 10 years – the loss of strength is only ~1% (based on measurements),
  • They remain magnetized despite exposure to strong external fields,
  • Because of the reflective layer of gold, the component looks aesthetically refined,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Significant impact in modern technologies – they are used in data storage devices, electromechanical systems, clinical machines or even technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also reinforces its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Health risk linked to microscopic shards may arise, especially if swallowed, which is important in the protection of children. It should also be noted that minuscule fragments from these assemblies might hinder health screening when ingested,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Maximum magnetic pulling forcewhat it depends on?

The given strength of the magnet means the optimal strength, measured in the best circumstances, namely:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Key elements affecting lifting force

The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the holding force is lower. In addition, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are delicate as well as can easily break and shatter.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or even a fracture.

 It is important to maintain neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Pay attention!

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98