tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel casing are ideally suited for use in difficult weather, including snow and rain see...

magnets with holders

Magnetic holders can be used to improve production processes, underwater exploration, or searching for meteorites from gold read...

We promise to ship ordered magnets on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

MW 9x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010108

GTIN: 5906301811077

5

Diameter Ø [±0,1 mm]

9 mm

Height [±0,1 mm]

3 mm

Weight

1.43 g

Magnetization Direction

↑ axial

Load capacity

1.49 kg / 14.61 N

Magnetic Induction

343.55 mT

Coating

[NiCuNi] nickel

1.132 with VAT / pcs + price for transport

0.920 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.920 ZŁ
1.132 ZŁ
price from 700 pcs
0.865 ZŁ
1.064 ZŁ
price from 2800 pcs
0.810 ZŁ
0.996 ZŁ

Looking for a better price?

Pick up the phone and ask +48 22 499 98 98 or let us know by means of request form the contact section.
Weight as well as structure of magnetic components can be verified using our online calculation tool.

Same-day processing for orders placed before 14:00.

MW 9x3 / N38 - cylindrical magnet

Specification/characteristics MW 9x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010108
GTIN
5906301811077
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
9 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
1.43 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.49 kg / 14.61 N
Magnetic Induction ~ ?
343.55 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These rod-shaped products are made of the strongest magnetic material in the world. As a result, they offer high magnetic density while maintaining a small size. Model MW 9x3 / N38 has a pull force of approx. 1.49 kg. Their symmetrical shape makes them ideal for installing in sockets, electric motors and magnetic separators. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
We recommend installation by gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). We recommend two-component (epoxy) glues, which do not react with the nickel coating. Do not hit the magnets, as neodymium is a brittle material and is prone to chipping upon impact.
The magnet grade determines the pull force of the material. A higher value means more power for the same size. N38 is the most common choice, which provides an optimal price-to-power ratio. For demanding applications, we recommend grade N52, which is the strongest commercially available sinter.
We use a protective plating of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects in indoor conditions. Please note they are not water-resistant. During underwater use, the coating may be damaged, leading to rusting of the magnet. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
Cylindrical magnets are a key component of many modern machines. They are commonly used to build rotors in brushless motors and in filters catching metal filings. Additionally, due to their precise dimensions, they are indispensable in Hall effect sensors.
The maximum operating temperature for the standard version is 80°C (176°F). Above this value, the magnet loses its strength. For work in hot environments (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). Please note that magnets are sensitive to rapid temperature changes.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They retain their attractive force for nearly 10 years – the drop is just ~1% (according to analyses),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • Thanks to the polished finish and gold coating, they have an elegant appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for precise shaping as well as customization to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Key role in cutting-edge sectors – they are used in HDDs, electric drives, diagnostic apparatus or even technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them useful in miniature devices

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also enhances its overall robustness,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Health risk due to small fragments may arise, especially if swallowed, which is important in the health of young users. It should also be noted that small elements from these assemblies may disrupt scanning when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, measured under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.

Handle Neodymium Magnets with Caution

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will crack or crumble with careless joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are incredibly delicate, they easily crack as well as can become damaged.

Magnets made of neodymium are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Warning!

In order to show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98