tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" in our store are available for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F300 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight, solid steel enclosure are ideally suited for use in variable and difficult climate conditions, including snow and rain see more...

magnetic holders

Magnetic holders can be used to enhance production, underwater exploration, or finding meteorites made of ore more information...

Enjoy delivery of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

RM R7 SUPER - 13000 Gs / N52 - magnetic distributor

magnetic distributor

Catalog no 280399

GTIN: 5906301814481

5

Weight

366 g

Magnetization Direction

↑ axial

Coating

[NiCuNi] nickel

160.00 with VAT / pcs + price for transport

130.08 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
130.08 ZŁ
160.00 ZŁ
price from 5 pcs
122.28 ZŁ
150.40 ZŁ
price from 15 pcs
114.47 ZŁ
140.80 ZŁ

Can't decide what to choose?

Call us +48 888 99 98 98 or contact us through contact form through our site.
Force and appearance of a magnet can be checked with our magnetic calculator.

Order by 14:00 and we’ll ship today!

RM R7 SUPER - 13000 Gs / N52 - magnetic distributor

Specification/characteristics RM R7 SUPER - 13000 Gs / N52 - magnetic distributor
properties
values
Cat. no.
280399
GTIN
5906301814481
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
366 g [±0,1 mm]
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Anti-theft tag detachers, such as those utilizing neodymium magnets, are a key component of store security systems. They work by using a strong magnetic field to unlock the tag's mechanism, enabling quick and safe removal of the security tag at the checkout. They are highly effective because they allow for repeated use of tags, which is particularly useful in clothing stores, electronics shops, or those selling high-value alcohol. Their benefits include compact size, high reliability, and the ability to open various tag types, such as round, rectangular, or Sensormatic tags, like those in models RM®#6 from DHIT or Ultra 12000 Gs. They effectively minimize financial losses, reducing the possibility of goods being taken with an active security tag. It is crucial that detachers are stored in a location inaccessible to unauthorized individuals to enhance the security of the anti-theft system.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They do not lose their strength nearly ten years – the loss of power is only ~1% (according to tests),
  • They show strong resistance to demagnetization from external magnetic fields,
  • In other words, due to the shiny gold coating, the magnet obtains an stylish appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • The ability for custom shaping or adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Important function in advanced technical fields – they are used in HDDs, electromechanical systems, medical equipment as well as high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
  • Possible threat due to small fragments may arise, when consumed by mistake, which is notable in the context of child safety. Additionally, miniature parts from these magnets have the potential to disrupt scanning if inside the body,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given holding capacity of the magnet means the highest holding force, assessed in ideal conditions, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Handle with Care: Neodymium Magnets

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 It is essential to maintain neodymium magnets out of reach from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will crack or alternatively crumble with uncontrolled joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnetic are particularly delicate, which leads to damage.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98