tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. All magnesy on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight and durable steel casing are excellent for use in difficult, demanding weather conditions, including during rain and snow check...

magnets with holders

Holders with magnets can be used to facilitate manufacturing, underwater discoveries, or searching for space rocks made of metal check...

Order is shipped on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010085

GTIN: 5906301810841

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

2 mm

Weight

0.29 g

Magnetization Direction

↑ axial

Load capacity

0.55 kg / 5.39 N

Magnetic Induction

386.50 mT

Coating

[NiCuNi] nickel

0.209 with VAT / pcs + price for transport

0.1700 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.1700 ZŁ
0.209 ZŁ
price from 4000 pcs
0.1598 ZŁ
0.1966 ZŁ
price from 15000 pcs
0.1496 ZŁ
0.1840 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 otherwise send us a note through request form the contact page.
Lifting power and shape of magnetic components can be analyzed on our modular calculator.

Order by 14:00 and we’ll ship today!

MW 5x2 / N38 - cylindrical magnet

Specification/characteristics MW 5x2 / N38 - cylindrical magnet
properties
values
Cat. no.
010085
GTIN
5906301810841
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.29 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.55 kg / 5.39 N
Magnetic Induction ~ ?
386.50 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 5x2 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform traditional ferrite magnets. Because of their strength, they are often employed in products that need strong adhesion. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 5x2 / N38 and a magnetic lifting capacity of 0.55 kg has a weight of only 0.29 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold-nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the website for the latest information as well as offers, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in many applications, they can also constitute certain dangers. Due to their significant magnetic power, they can pull metallic objects with significant force, which can lead to damaging skin or other materials, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as nickel, to protect them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical magnet N50 and N52 is a strong and powerful magnetic product with the shape of a cylinder, providing strong holding power and universal applicability. Good price, 24h delivery, stability and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable holding force, neodymium magnets have these key benefits:

  • Their strength is durable, and after around ten years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Thanks to the shiny finish and silver coating, they have an visually attractive appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Key role in cutting-edge sectors – they serve a purpose in hard drives, rotating machines, medical equipment or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them useful in miniature devices

Disadvantages of magnetic elements:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Safety concern linked to microscopic shards may arise, in case of ingestion, which is important in the context of child safety. Moreover, small elements from these devices might interfere with diagnostics after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Highest magnetic holding forcewhat it depends on?

The given holding capacity of the magnet means the highest holding force, assessed in the best circumstances, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • at room temperature

What influences lifting capacity in practice

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, whereas under shearing force the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Safety Precautions

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnetic are characterized by their fragility, which can cause them to crumble.

Magnets made of neodymium are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets will jump and also contact together within a distance of several to around 10 cm from each other.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98