MW 9.5x1 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010107
GTIN/EAN: 5906301811060
Diameter Ø
9.5 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.53 g
Magnetization Direction
↑ axial
Load capacity
0.40 kg / 3.96 N
Magnetic Induction
127.68 mT / 1277 Gs
Coating
[NiCuNi] Nickel
0.295 ZŁ with VAT / pcs + price for transport
0.240 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
alternatively drop us a message using
form
the contact page.
Parameters and shape of neodymium magnets can be tested using our
modular calculator.
Order by 14:00 and we’ll ship today!
Technical - MW 9.5x1 / N38 - cylindrical magnet
Specification / characteristics - MW 9.5x1 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010107 |
| GTIN/EAN | 5906301811060 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 9.5 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.53 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.40 kg / 3.96 N |
| Magnetic Induction ~ ? | 127.68 mT / 1277 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the magnet - data
The following information represent the direct effect of a engineering analysis. Values rely on models for the material Nd2Fe14B. Operational performance may differ. Use these calculations as a supplementary guide during assembly planning.
Table 1: Static force (force vs distance) - interaction chart
MW 9.5x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1276 Gs
127.6 mT
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
safe |
| 1 mm |
1129 Gs
112.9 mT
|
0.31 kg / 0.69 lbs
312.8 g / 3.1 N
|
safe |
| 2 mm |
905 Gs
90.5 mT
|
0.20 kg / 0.44 lbs
201.0 g / 2.0 N
|
safe |
| 3 mm |
683 Gs
68.3 mT
|
0.11 kg / 0.25 lbs
114.5 g / 1.1 N
|
safe |
| 5 mm |
366 Gs
36.6 mT
|
0.03 kg / 0.07 lbs
32.9 g / 0.3 N
|
safe |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
safe |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
safe |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Slippage force (vertical surface)
MW 9.5x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 9.5x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
Table 4: Material efficiency (saturation) - power losses
MW 9.5x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 1 mm |
|
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 2 mm |
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 3 mm |
|
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 5 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 10 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 11 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 12 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
Table 5: Thermal stability (stability) - resistance threshold
MW 9.5x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
OK |
| 40 °C | -2.2% |
0.39 kg / 0.86 lbs
391.2 g / 3.8 N
|
OK |
| 60 °C | -4.4% |
0.38 kg / 0.84 lbs
382.4 g / 3.8 N
|
|
| 80 °C | -6.6% |
0.37 kg / 0.82 lbs
373.6 g / 3.7 N
|
|
| 100 °C | -28.8% |
0.28 kg / 0.63 lbs
284.8 g / 2.8 N
|
Table 6: Two magnets (repulsion) - field range
MW 9.5x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.71 kg / 1.57 lbs
2 403 Gs
|
0.11 kg / 0.24 lbs
107 g / 1.0 N
|
N/A |
| 1 mm |
0.65 kg / 1.43 lbs
2 436 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.29 lbs
~0 Gs
|
| 2 mm |
0.56 kg / 1.23 lbs
2 257 Gs
|
0.08 kg / 0.18 lbs
84 g / 0.8 N
|
0.50 kg / 1.10 lbs
~0 Gs
|
| 3 mm |
0.46 kg / 1.00 lbs
2 041 Gs
|
0.07 kg / 0.15 lbs
68 g / 0.7 N
|
0.41 kg / 0.90 lbs
~0 Gs
|
| 5 mm |
0.27 kg / 0.60 lbs
1 580 Gs
|
0.04 kg / 0.09 lbs
41 g / 0.4 N
|
0.25 kg / 0.54 lbs
~0 Gs
|
| 10 mm |
0.06 kg / 0.13 lbs
732 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
183 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - warnings
MW 9.5x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Collisions (kinetic energy) - warning
MW 9.5x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
27.80 km/h
(7.72 m/s)
|
0.02 J | |
| 30 mm |
47.99 km/h
(13.33 m/s)
|
0.05 J | |
| 50 mm |
61.95 km/h
(17.21 m/s)
|
0.08 J | |
| 100 mm |
87.61 km/h
(24.34 m/s)
|
0.16 J |
Table 9: Surface protection spec
MW 9.5x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 9.5x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 184 Mx | 11.8 µWb |
| Pc Coefficient | 0.16 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MW 9.5x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.40 kg | Standard |
| Water (riverbed) |
0.46 kg
(+0.06 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Caution: On a vertical surface, the magnet holds merely a fraction of its perpendicular strength.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) drastically reduces the holding force.
3. Temperature resistance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.16
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also offers
Strengths as well as weaknesses of Nd2Fe14B magnets.
Advantages
- Their strength is durable, and after approximately 10 years it drops only by ~1% (theoretically),
- They are resistant to demagnetization induced by presence of other magnetic fields,
- In other words, due to the glossy layer of nickel, the element gains a professional look,
- They show high magnetic induction at the operating surface, making them more effective,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can function (depending on the shape) even at a temperature of 230°C or more...
- Due to the ability of free molding and adaptation to custom requirements, NdFeB magnets can be manufactured in a wide range of shapes and sizes, which increases their versatility,
- Universal use in electronics industry – they are used in mass storage devices, brushless drives, medical devices, as well as complex engineering applications.
- Thanks to concentrated force, small magnets offer high operating force, in miniature format,
Weaknesses
- At strong impacts they can break, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- Due to limitations in creating threads and complicated forms in magnets, we recommend using a housing - magnetic mount.
- Health risk to health – tiny shards of magnets pose a threat, if swallowed, which gains importance in the context of child health protection. It is also worth noting that tiny parts of these products are able to be problematic in diagnostics medical after entering the body.
- With mass production the cost of neodymium magnets can be a barrier,
Lifting parameters
Maximum lifting capacity of the magnet – what contributes to it?
- on a plate made of structural steel, optimally conducting the magnetic flux
- possessing a thickness of at least 10 mm to avoid saturation
- with an ideally smooth contact surface
- without the slightest insulating layer between the magnet and steel
- during detachment in a direction perpendicular to the plane
- at conditions approx. 20°C
Practical lifting capacity: influencing factors
- Distance (between the magnet and the plate), as even a very small clearance (e.g. 0.5 mm) leads to a drastic drop in force by up to 50% (this also applies to varnish, corrosion or dirt).
- Pull-off angle – note that the magnet has greatest strength perpendicularly. Under shear forces, the holding force drops significantly, often to levels of 20-30% of the maximum value.
- Plate thickness – too thin sheet causes magnetic saturation, causing part of the flux to be lost into the air.
- Chemical composition of the base – low-carbon steel attracts best. Alloy steels decrease magnetic permeability and lifting capacity.
- Surface finish – full contact is possible only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
- Thermal conditions – NdFeB sinters have a negative temperature coefficient. When it is hot they lose power, and in frost gain strength (up to a certain limit).
Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance between the magnet’s surface and the plate reduces the lifting capacity.
Warnings
Nickel coating and allergies
Studies show that nickel (the usual finish) is a strong allergen. If your skin reacts to metals, avoid touching magnets with bare hands or opt for versions in plastic housing.
Life threat
Individuals with a ICD should maintain an safe separation from magnets. The magnetism can stop the functioning of the life-saving device.
This is not a toy
Only for adults. Small elements can be swallowed, causing intestinal necrosis. Keep away from children and animals.
Electronic hazard
Do not bring magnets near a purse, laptop, or TV. The magnetism can permanently damage these devices and wipe information from cards.
Respect the power
Handle magnets with awareness. Their immense force can surprise even professionals. Be vigilant and respect their force.
Physical harm
Danger of trauma: The pulling power is so immense that it can result in hematomas, crushing, and even bone fractures. Protective gloves are recommended.
Magnetic interference
An intense magnetic field disrupts the functioning of compasses in smartphones and navigation systems. Do not bring magnets close to a smartphone to avoid breaking the sensors.
Machining danger
Mechanical processing of neodymium magnets poses a fire risk. Neodymium dust reacts violently with oxygen and is difficult to extinguish.
Permanent damage
Regular neodymium magnets (grade N) lose magnetization when the temperature surpasses 80°C. This process is irreversible.
Shattering risk
Neodymium magnets are ceramic materials, meaning they are fragile like glass. Clashing of two magnets leads to them cracking into small pieces.
