Neodymiums – complete shape selection

Need strong magnetic field? Our range includes wide selection of disc, cylindrical and ring magnets. They are ideal for home use, workshop and industrial tasks. Browse assortment in stock.

check price list and dimensions

Equipment for treasure hunters

Discover your passion with treasure salvaging! Our specialized grips (F200, F400) provide grip certainty and immense power. Solid, corrosion-resistant housing and reinforced ropes will perform in any water.

find searching equipment

Magnetic solutions for business

Professional solutions for mounting without drilling. Threaded grips (M8, M10, M12) provide instant organization of work on warehouses. Perfect for installing lighting, sensors and ads.

see industrial applications

🚚 Order by 14:00 – we'll ship same day!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 9.5x1 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010107

GTIN/EAN: 5906301811060

5.00

Diameter Ø

9.5 mm [±0,1 mm]

Height

1 mm [±0,1 mm]

Weight

0.53 g

Magnetization Direction

↑ axial

Load capacity

0.40 kg / 3.96 N

Magnetic Induction

127.68 mT / 1277 Gs

Coating

[NiCuNi] Nickel

0.295 with VAT / pcs + price for transport

0.240 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.240 ZŁ
0.295 ZŁ
price from 4000 pcs
0.216 ZŁ
0.266 ZŁ
price from 8000 pcs
0.211 ZŁ
0.260 ZŁ
Not sure what to buy?

Call us now +48 888 99 98 98 alternatively drop us a message using form the contact page.
Parameters and shape of neodymium magnets can be tested using our modular calculator.

Order by 14:00 and we’ll ship today!

Technical - MW 9.5x1 / N38 - cylindrical magnet

Specification / characteristics - MW 9.5x1 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010107
GTIN/EAN 5906301811060
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 9.5 mm [±0,1 mm]
Height 1 mm [±0,1 mm]
Weight 0.53 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.40 kg / 3.96 N
Magnetic Induction ~ ? 127.68 mT / 1277 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 9.5x1 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the magnet - data

The following information represent the direct effect of a engineering analysis. Values rely on models for the material Nd2Fe14B. Operational performance may differ. Use these calculations as a supplementary guide during assembly planning.

Table 1: Static force (force vs distance) - interaction chart
MW 9.5x1 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 1276 Gs
127.6 mT
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
safe
1 mm 1129 Gs
112.9 mT
0.31 kg / 0.69 lbs
312.8 g / 3.1 N
safe
2 mm 905 Gs
90.5 mT
0.20 kg / 0.44 lbs
201.0 g / 2.0 N
safe
3 mm 683 Gs
68.3 mT
0.11 kg / 0.25 lbs
114.5 g / 1.1 N
safe
5 mm 366 Gs
36.6 mT
0.03 kg / 0.07 lbs
32.9 g / 0.3 N
safe
10 mm 92 Gs
9.2 mT
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
safe
15 mm 33 Gs
3.3 mT
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
safe
20 mm 15 Gs
1.5 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
safe
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Slippage force (vertical surface)
MW 9.5x1 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.08 kg / 0.18 lbs
80.0 g / 0.8 N
1 mm Stal (~0.2) 0.06 kg / 0.14 lbs
62.0 g / 0.6 N
2 mm Stal (~0.2) 0.04 kg / 0.09 lbs
40.0 g / 0.4 N
3 mm Stal (~0.2) 0.02 kg / 0.05 lbs
22.0 g / 0.2 N
5 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 9.5x1 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.20 kg / 0.44 lbs
200.0 g / 2.0 N

Table 4: Material efficiency (saturation) - power losses
MW 9.5x1 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
1 mm
25%
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
2 mm
50%
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
3 mm
75%
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
5 mm
100%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
10 mm
100%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
11 mm
100%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
12 mm
100%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N

Table 5: Thermal stability (stability) - resistance threshold
MW 9.5x1 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.40 kg / 0.88 lbs
400.0 g / 3.9 N
OK
40 °C -2.2% 0.39 kg / 0.86 lbs
391.2 g / 3.8 N
OK
60 °C -4.4% 0.38 kg / 0.84 lbs
382.4 g / 3.8 N
80 °C -6.6% 0.37 kg / 0.82 lbs
373.6 g / 3.7 N
100 °C -28.8% 0.28 kg / 0.63 lbs
284.8 g / 2.8 N

Table 6: Two magnets (repulsion) - field range
MW 9.5x1 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 0.71 kg / 1.57 lbs
2 403 Gs
0.11 kg / 0.24 lbs
107 g / 1.0 N
N/A
1 mm 0.65 kg / 1.43 lbs
2 436 Gs
0.10 kg / 0.21 lbs
97 g / 1.0 N
0.58 kg / 1.29 lbs
~0 Gs
2 mm 0.56 kg / 1.23 lbs
2 257 Gs
0.08 kg / 0.18 lbs
84 g / 0.8 N
0.50 kg / 1.10 lbs
~0 Gs
3 mm 0.46 kg / 1.00 lbs
2 041 Gs
0.07 kg / 0.15 lbs
68 g / 0.7 N
0.41 kg / 0.90 lbs
~0 Gs
5 mm 0.27 kg / 0.60 lbs
1 580 Gs
0.04 kg / 0.09 lbs
41 g / 0.4 N
0.25 kg / 0.54 lbs
~0 Gs
10 mm 0.06 kg / 0.13 lbs
732 Gs
0.01 kg / 0.02 lbs
9 g / 0.1 N
0.05 kg / 0.12 lbs
~0 Gs
20 mm 0.00 kg / 0.01 lbs
183 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
16 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Safety (HSE) (implants) - warnings
MW 9.5x1 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.0 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Timepiece 20 Gs (2.0 mT) 2.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 1.5 cm
Remote 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 0.5 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Collisions (kinetic energy) - warning
MW 9.5x1 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 27.80 km/h
(7.72 m/s)
0.02 J
30 mm 47.99 km/h
(13.33 m/s)
0.05 J
50 mm 61.95 km/h
(17.21 m/s)
0.08 J
100 mm 87.61 km/h
(24.34 m/s)
0.16 J

Table 9: Surface protection spec
MW 9.5x1 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MW 9.5x1 / N38

Parameter Value SI Unit / Description
Magnetic Flux 1 184 Mx 11.8 µWb
Pc Coefficient 0.16 Low (Flat)

Table 11: Underwater work (magnet fishing)
MW 9.5x1 / N38

Environment Effective steel pull Effect
Air (land) 0.40 kg Standard
Water (riverbed) 0.46 kg
(+0.06 kg buoyancy gain)
+14.5%
Warning: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Shear force

*Caution: On a vertical surface, the magnet holds merely a fraction of its perpendicular strength.

2. Efficiency vs thickness

*Thin steel (e.g. computer case) drastically reduces the holding force.

3. Temperature resistance

*For N38 material, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.16

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010107-2026
Measurement Calculator
Pulling force

Magnetic Field

View also offers

The presented product is a very strong rod magnet, made from modern NdFeB material, which, at dimensions of Ø9.5x1 mm, guarantees maximum efficiency. This specific item boasts a tolerance of ±0.1mm and industrial build quality, making it an excellent solution for professional engineers and designers. As a magnetic rod with impressive force (approx. 0.40 kg), this product is in stock from our warehouse in Poland, ensuring quick order fulfillment. Moreover, its Ni-Cu-Ni coating secures it against corrosion in typical operating conditions, guaranteeing an aesthetic appearance and durability for years.
This model is perfect for building generators, advanced Hall effect sensors, and efficient magnetic separators, where field concentration on a small surface counts. Thanks to the pull force of 3.96 N with a weight of only 0.53 g, this cylindrical magnet is indispensable in miniature devices and wherever low weight is crucial.
Due to the brittleness of the NdFeB material, we absolutely advise against force-fitting (so-called press-fit), as this risks chipping the coating of this professional component. To ensure stability in automation, anaerobic resins are used, which are safe for nickel and fill the gap, guaranteeing high repeatability of the connection.
Grade N38 is the most popular standard for professional neodymium magnets, offering an optimal price-to-power ratio and operational stability. If you need the strongest magnets in the same volume (Ø9.5x1), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our store.
This model is characterized by dimensions Ø9.5x1 mm, which, at a weight of 0.53 g, makes it an element with high magnetic energy density. The value of 3.96 N means that the magnet is capable of holding a weight many times exceeding its own mass of 0.53 g. The product has a [NiCuNi] coating, which secures it against external factors, giving it an aesthetic, silvery shine.
Standardly, the magnetic axis runs through the center of the cylinder, causing the greatest attraction force to occur on the bases with a diameter of 9.5 mm. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized diametrically if your project requires it.

Strengths as well as weaknesses of Nd2Fe14B magnets.

Advantages

Apart from their notable magnetism, neodymium magnets have these key benefits:
  • Their strength is durable, and after approximately 10 years it drops only by ~1% (theoretically),
  • They are resistant to demagnetization induced by presence of other magnetic fields,
  • In other words, due to the glossy layer of nickel, the element gains a professional look,
  • They show high magnetic induction at the operating surface, making them more effective,
  • Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can function (depending on the shape) even at a temperature of 230°C or more...
  • Due to the ability of free molding and adaptation to custom requirements, NdFeB magnets can be manufactured in a wide range of shapes and sizes, which increases their versatility,
  • Universal use in electronics industry – they are used in mass storage devices, brushless drives, medical devices, as well as complex engineering applications.
  • Thanks to concentrated force, small magnets offer high operating force, in miniature format,

Weaknesses

Disadvantages of neodymium magnets:
  • At strong impacts they can break, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
  • We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
  • They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
  • Due to limitations in creating threads and complicated forms in magnets, we recommend using a housing - magnetic mount.
  • Health risk to health – tiny shards of magnets pose a threat, if swallowed, which gains importance in the context of child health protection. It is also worth noting that tiny parts of these products are able to be problematic in diagnostics medical after entering the body.
  • With mass production the cost of neodymium magnets can be a barrier,

Lifting parameters

Maximum lifting capacity of the magnetwhat contributes to it?

Holding force of 0.40 kg is a theoretical maximum value executed under the following configuration:
  • on a plate made of structural steel, optimally conducting the magnetic flux
  • possessing a thickness of at least 10 mm to avoid saturation
  • with an ideally smooth contact surface
  • without the slightest insulating layer between the magnet and steel
  • during detachment in a direction perpendicular to the plane
  • at conditions approx. 20°C

Practical lifting capacity: influencing factors

Bear in mind that the application force will differ depending on the following factors, starting with the most relevant:
  • Distance (between the magnet and the plate), as even a very small clearance (e.g. 0.5 mm) leads to a drastic drop in force by up to 50% (this also applies to varnish, corrosion or dirt).
  • Pull-off angle – note that the magnet has greatest strength perpendicularly. Under shear forces, the holding force drops significantly, often to levels of 20-30% of the maximum value.
  • Plate thickness – too thin sheet causes magnetic saturation, causing part of the flux to be lost into the air.
  • Chemical composition of the base – low-carbon steel attracts best. Alloy steels decrease magnetic permeability and lifting capacity.
  • Surface finish – full contact is possible only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
  • Thermal conditions – NdFeB sinters have a negative temperature coefficient. When it is hot they lose power, and in frost gain strength (up to a certain limit).

Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance between the magnet’s surface and the plate reduces the lifting capacity.

Warnings
Nickel coating and allergies

Studies show that nickel (the usual finish) is a strong allergen. If your skin reacts to metals, avoid touching magnets with bare hands or opt for versions in plastic housing.

Life threat

Individuals with a ICD should maintain an safe separation from magnets. The magnetism can stop the functioning of the life-saving device.

This is not a toy

Only for adults. Small elements can be swallowed, causing intestinal necrosis. Keep away from children and animals.

Electronic hazard

Do not bring magnets near a purse, laptop, or TV. The magnetism can permanently damage these devices and wipe information from cards.

Respect the power

Handle magnets with awareness. Their immense force can surprise even professionals. Be vigilant and respect their force.

Physical harm

Danger of trauma: The pulling power is so immense that it can result in hematomas, crushing, and even bone fractures. Protective gloves are recommended.

Magnetic interference

An intense magnetic field disrupts the functioning of compasses in smartphones and navigation systems. Do not bring magnets close to a smartphone to avoid breaking the sensors.

Machining danger

Mechanical processing of neodymium magnets poses a fire risk. Neodymium dust reacts violently with oxygen and is difficult to extinguish.

Permanent damage

Regular neodymium magnets (grade N) lose magnetization when the temperature surpasses 80°C. This process is irreversible.

Shattering risk

Neodymium magnets are ceramic materials, meaning they are fragile like glass. Clashing of two magnets leads to them cracking into small pieces.

Important! Learn more about risks in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98