tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. All magnesy neodymowe on our website are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnet for searching F400 GOLD

Where to purchase strong neodymium magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in variable and difficult climate conditions, including snow and rain more information...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater exploration, or searching for meteorites made of ore more information...

Enjoy shipping of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 9.5x1 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010107

GTIN: 5906301811060

5

Diameter Ø [±0,1 mm]

9.5 mm

Height [±0,1 mm]

1 mm

Weight

0.53 g

Magnetization Direction

↑ axial

Load capacity

0.53 kg / 5.2 N

Magnetic Induction

127.68 mT

Coating

[NiCuNi] nickel

0.26 with VAT / pcs + price for transport

0.21 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.21 ZŁ
0.26 ZŁ
price from 4000 pcs
0.19 ZŁ
0.23 ZŁ
price from 8000 pcs
0.18 ZŁ
0.23 ZŁ

Can't decide what to choose?

Pick up the phone and ask +48 22 499 98 98 alternatively send us a note using our online form the contact section.
Weight as well as appearance of magnetic components can be tested with our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

MW 9.5x1 / N38 - cylindrical magnet

Specification/characteristics MW 9.5x1 / N38 - cylindrical magnet
properties
values
Cat. no.
010107
GTIN
5906301811060
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
9.5 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.53 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.53 kg / 5.2 N
Magnetic Induction ~ ?
127.68 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 9.5x1 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed ordinary iron magnets. Because of their strength, they are often used in products that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet named MW 9.5x1 / N38 and a magnetic strength 0.53 kg has a weight of only 0.53 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information as well as offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very practical in many applications, they can also pose certain risk. Because of their significant magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin as well as other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and heat treating. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as nickel, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A neodymium magnet N52 and N50 is a powerful and highly strong metal object with the shape of a cylinder, providing high force and universal applicability. Good price, fast shipping, durability and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetism, neodymium magnets have these key benefits:

  • They have unchanged lifting capacity, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • They are extremely resistant to demagnetization caused by external magnetic sources,
  • Thanks to the shiny finish and nickel coating, they have an aesthetic appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Significant impact in new technology industries – they are utilized in data storage devices, electromechanical systems, medical equipment and technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall robustness,
  • They lose magnetic force at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is significant in the health of young users. Furthermore, tiny components from these products might hinder health screening if inside the body,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Notes with Neodymium Magnets

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

 Keep neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Magnets made of neodymium are extremely delicate, they easily crack and can crumble.

Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets jump and clash mutually within a radius of several to around 10 cm from each other.

Caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98