Neodymium magnets: strength you're looking for

Looking for huge power in small size? Our range includes wide selection of various shapes and sizes. Best choice for home use, workshop and model making. Check our offer in stock.

discover price list and dimensions

Magnets for seabed exploration

Begin your hobby related to seabed exploration! Our specialized grips (F200, F400) provide grip certainty and immense power. Stainless steel construction and reinforced ropes will perform in rivers and lakes.

choose your set

Magnetic mounting systems

Reliable solutions for mounting without drilling. Threaded grips (external or internal) provide quick improvement of work on warehouses. Perfect for installing lamps, detectors and ads.

check available threads

🚀 Express processing: orders by 14:00 shipped immediately!

Dhit sp. z o.o.
Product available Ships tomorrow

MP 10x7/3.5x3 / N38 - ring magnet

ring magnet

Catalog no 030180

GTIN/EAN: 5906301811978

5.00

Diameter

10 mm [±0,1 mm]

internal diameter Ø

7/3.5 mm [±0,1 mm]

Height

3 mm [±0,1 mm]

Weight

1.55 g

Magnetization Direction

↑ axial

Load capacity

1.88 kg / 18.47 N

Magnetic Induction

318.70 mT / 3187 Gs

Coating

[NiCuNi] Nickel

0.824 with VAT / pcs + price for transport

0.670 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.670 ZŁ
0.824 ZŁ
price from 680 pcs
0.603 ZŁ
0.742 ZŁ
price from 1360 pcs
0.590 ZŁ
0.725 ZŁ
Looking for a better price?

Give us a call +48 888 99 98 98 if you prefer let us know via request form the contact page.
Lifting power along with appearance of neodymium magnets can be calculated with our magnetic mass calculator.

Orders submitted before 14:00 will be dispatched today!

Detailed specification - MP 10x7/3.5x3 / N38 - ring magnet

Specification / characteristics - MP 10x7/3.5x3 / N38 - ring magnet

properties
properties values
Cat. no. 030180
GTIN/EAN 5906301811978
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 10 mm [±0,1 mm]
internal diameter Ø 7/3.5 mm [±0,1 mm]
Height 3 mm [±0,1 mm]
Weight 1.55 g
Magnetization Direction ↑ axial
Load capacity ~ ? 1.88 kg / 18.47 N
Magnetic Induction ~ ? 318.70 mT / 3187 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 10x7/3.5x3 / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical modeling of the assembly - report

Presented information are the outcome of a mathematical simulation. Values are based on algorithms for the material Nd2Fe14B. Real-world parameters might slightly deviate from the simulation results. Use these calculations as a supplementary guide during assembly planning.

Table 1: Static pull force (pull vs distance) - power drop
MP 10x7/3.5x3 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 2813 Gs
281.3 mT
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
weak grip
1 mm 2373 Gs
237.3 mT
1.34 kg / 2.95 LBS
1338.1 g / 13.1 N
weak grip
2 mm 1870 Gs
187.0 mT
0.83 kg / 1.83 LBS
830.9 g / 8.2 N
weak grip
3 mm 1416 Gs
141.6 mT
0.48 kg / 1.05 LBS
476.6 g / 4.7 N
weak grip
5 mm 785 Gs
78.5 mT
0.15 kg / 0.32 LBS
146.4 g / 1.4 N
weak grip
10 mm 214 Gs
21.4 mT
0.01 kg / 0.02 LBS
10.9 g / 0.1 N
weak grip
15 mm 81 Gs
8.1 mT
0.00 kg / 0.00 LBS
1.6 g / 0.0 N
weak grip
20 mm 38 Gs
3.8 mT
0.00 kg / 0.00 LBS
0.3 g / 0.0 N
weak grip
30 mm 12 Gs
1.2 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
weak grip
50 mm 3 Gs
0.3 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
weak grip

Table 2: Sliding capacity (vertical surface)
MP 10x7/3.5x3 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.38 kg / 0.83 LBS
376.0 g / 3.7 N
1 mm Stal (~0.2) 0.27 kg / 0.59 LBS
268.0 g / 2.6 N
2 mm Stal (~0.2) 0.17 kg / 0.37 LBS
166.0 g / 1.6 N
3 mm Stal (~0.2) 0.10 kg / 0.21 LBS
96.0 g / 0.9 N
5 mm Stal (~0.2) 0.03 kg / 0.07 LBS
30.0 g / 0.3 N
10 mm Stal (~0.2) 0.00 kg / 0.00 LBS
2.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N

Table 3: Vertical assembly (sliding) - vertical pull
MP 10x7/3.5x3 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.56 kg / 1.24 LBS
564.0 g / 5.5 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.38 kg / 0.83 LBS
376.0 g / 3.7 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.19 kg / 0.41 LBS
188.0 g / 1.8 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.94 kg / 2.07 LBS
940.0 g / 9.2 N

Table 4: Material efficiency (substrate influence) - power losses
MP 10x7/3.5x3 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.19 kg / 0.41 LBS
188.0 g / 1.8 N
1 mm
25%
0.47 kg / 1.04 LBS
470.0 g / 4.6 N
2 mm
50%
0.94 kg / 2.07 LBS
940.0 g / 9.2 N
3 mm
75%
1.41 kg / 3.11 LBS
1410.0 g / 13.8 N
5 mm
100%
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
10 mm
100%
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
11 mm
100%
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
12 mm
100%
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N

Table 5: Thermal stability (stability) - resistance threshold
MP 10x7/3.5x3 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
OK
40 °C -2.2% 1.84 kg / 4.05 LBS
1838.6 g / 18.0 N
OK
60 °C -4.4% 1.80 kg / 3.96 LBS
1797.3 g / 17.6 N
80 °C -6.6% 1.76 kg / 3.87 LBS
1755.9 g / 17.2 N
100 °C -28.8% 1.34 kg / 2.95 LBS
1338.6 g / 13.1 N

Table 6: Two magnets (attraction) - field range
MP 10x7/3.5x3 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.86 kg / 6.30 LBS
4 419 Gs
0.43 kg / 0.95 LBS
429 g / 4.2 N
N/A
1 mm 2.46 kg / 5.43 LBS
5 224 Gs
0.37 kg / 0.81 LBS
370 g / 3.6 N
2.22 kg / 4.89 LBS
~0 Gs
2 mm 2.03 kg / 4.49 LBS
4 747 Gs
0.31 kg / 0.67 LBS
305 g / 3.0 N
1.83 kg / 4.04 LBS
~0 Gs
3 mm 1.62 kg / 3.58 LBS
4 242 Gs
0.24 kg / 0.54 LBS
244 g / 2.4 N
1.46 kg / 3.22 LBS
~0 Gs
5 mm 0.96 kg / 2.12 LBS
3 266 Gs
0.14 kg / 0.32 LBS
144 g / 1.4 N
0.87 kg / 1.91 LBS
~0 Gs
10 mm 0.22 kg / 0.49 LBS
1 570 Gs
0.03 kg / 0.07 LBS
33 g / 0.3 N
0.20 kg / 0.44 LBS
~0 Gs
20 mm 0.02 kg / 0.04 LBS
429 Gs
0.00 kg / 0.01 LBS
2 g / 0.0 N
0.01 kg / 0.03 LBS
~0 Gs
50 mm 0.00 kg / 0.00 LBS
41 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
60 mm 0.00 kg / 0.00 LBS
25 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
70 mm 0.00 kg / 0.00 LBS
16 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
80 mm 0.00 kg / 0.00 LBS
11 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
90 mm 0.00 kg / 0.00 LBS
8 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
100 mm 0.00 kg / 0.00 LBS
6 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs

Table 7: Safety (HSE) (electronics) - precautionary measures
MP 10x7/3.5x3 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 4.5 cm
Hearing aid 10 Gs (1.0 mT) 3.5 cm
Timepiece 20 Gs (2.0 mT) 3.0 cm
Mobile device 40 Gs (4.0 mT) 2.0 cm
Remote 50 Gs (5.0 mT) 2.0 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Collisions (kinetic energy) - warning
MP 10x7/3.5x3 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 35.25 km/h
(9.79 m/s)
0.07 J
30 mm 60.84 km/h
(16.90 m/s)
0.22 J
50 mm 78.54 km/h
(21.82 m/s)
0.37 J
100 mm 111.07 km/h
(30.85 m/s)
0.74 J

Table 9: Coating parameters (durability)
MP 10x7/3.5x3 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MP 10x7/3.5x3 / N38

Parameter Value SI Unit / Description
Magnetic Flux 1 899 Mx 19.0 µWb
Pc Coefficient 0.37 Low (Flat)

Table 11: Underwater work (magnet fishing)
MP 10x7/3.5x3 / N38

Environment Effective steel pull Effect
Air (land) 1.88 kg Standard
Water (riverbed) 2.15 kg
(+0.27 kg buoyancy gain)
+14.5%
Rust risk: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Wall mount (shear)

*Caution: On a vertical wall, the magnet retains just ~20% of its perpendicular strength.

2. Plate thickness effect

*Thin metal sheet (e.g. 0.5mm PC case) severely reduces the holding force.

3. Thermal stability

*For N38 grade, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.37

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030180-2026
Measurement Calculator
Force (pull)

Magnetic Field

Other products

The ring magnet with a hole MP 10x7/3.5x3 / N38 is created for permanent mounting, where glue might fail or be insufficient. Mounting is clean and reversible, unlike gluing. It is also often used in advertising for fixing signs and in workshops for organizing tools.
This is a crucial issue when working with model MP 10x7/3.5x3 / N38. Neodymium magnets are sintered ceramics, which means they are very brittle and inelastic. When tightening the screw, you must maintain caution. We recommend tightening manually with a screwdriver, not an impact driver, because too much pressure will cause the ring to crack. It's a good idea to use a rubber spacer under the screw head, which will cushion the stresses. Remember: cracking during assembly results from material properties, not a product defect.
Moisture can penetrate micro-cracks in the coating and cause oxidation of the magnet. In the place of the mounting hole, the coating is thinner and easily scratched when tightening the screw, which will become a corrosion focus. This product is dedicated for indoor use. For outdoor applications, we recommend choosing magnets in hermetic housing or additional protection with varnish.
The inner hole diameter determines the maximum size of the mounting element. If the magnet does not have a chamfer (cone), we recommend using a screw with a flat or cylindrical head, or possibly using a washer. Aesthetic mounting requires selecting the appropriate head size.
This model is characterized by dimensions Ø10x3 mm and a weight of 1.55 g. The key parameter here is the holding force amounting to approximately 1.88 kg (force ~18.47 N). The product has a [NiCuNi] coating and is made of NdFeB material. Inner hole dimension: 7/3.5 mm.
The poles are located on the planes with holes, not on the sides of the ring. If you want two such magnets screwed with cones facing each other (faces) to attract, you must connect them with opposite poles (N to S). When ordering a larger quantity, magnets are usually packed in stacks, where they are already naturally paired.

Pros and cons of neodymium magnets.

Advantages

Besides their magnetic performance, neodymium magnets are valued for these benefits:
  • Their strength remains stable, and after approximately 10 years it drops only by ~1% (theoretically),
  • Magnets very well protect themselves against demagnetization caused by external fields,
  • By using a lustrous coating of nickel, the element has an elegant look,
  • Magnets are characterized by excellent magnetic induction on the outer layer,
  • Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the form) even at a temperature of 230°C or more...
  • Possibility of individual creating as well as modifying to individual needs,
  • Versatile presence in electronics industry – they are utilized in mass storage devices, drive modules, advanced medical instruments, as well as multitasking production systems.
  • Thanks to their power density, small magnets offer high operating force, in miniature format,

Disadvantages

Cons of neodymium magnets: tips and applications.
  • Susceptibility to cracking is one of their disadvantages. Upon strong impact they can break. We recommend keeping them in a special holder, which not only secures them against impacts but also increases their durability
  • Neodymium magnets decrease their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
  • When exposed to humidity, magnets usually rust. To use them in conditions outside, it is recommended to use protective magnets, such as those in rubber or plastics, which prevent oxidation and corrosion.
  • Due to limitations in producing threads and complicated forms in magnets, we propose using casing - magnetic mechanism.
  • Possible danger resulting from small fragments of magnets pose a threat, in case of ingestion, which is particularly important in the aspect of protecting the youngest. Additionally, small components of these devices can complicate diagnosis medical when they are in the body.
  • With large orders the cost of neodymium magnets is economically unviable,

Pull force analysis

Maximum magnetic pulling forcewhat contributes to it?

The load parameter shown refers to the peak performance, obtained under ideal test conditions, specifically:
  • using a base made of high-permeability steel, acting as a ideal flux conductor
  • possessing a massiveness of at least 10 mm to avoid saturation
  • characterized by smoothness
  • with zero gap (without paint)
  • during detachment in a direction perpendicular to the mounting surface
  • at ambient temperature room level

Lifting capacity in real conditions – factors

In practice, the actual lifting capacity is determined by many variables, listed from the most important:
  • Gap between magnet and steel – every millimeter of distance (caused e.g. by veneer or unevenness) drastically reduces the magnet efficiency, often by half at just 0.5 mm.
  • Loading method – catalog parameter refers to pulling vertically. When slipping, the magnet exhibits significantly lower power (typically approx. 20-30% of nominal force).
  • Steel thickness – insufficiently thick sheet does not close the flux, causing part of the power to be wasted to the other side.
  • Steel grade – the best choice is pure iron steel. Hardened steels may attract less.
  • Surface structure – the more even the plate, the better the adhesion and stronger the hold. Unevenness creates an air distance.
  • Thermal environment – temperature increase results in weakening of induction. Check the maximum operating temperature for a given model.

Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a small distance between the magnet’s surface and the plate reduces the holding force.

Warnings
Product not for children

These products are not suitable for play. Eating a few magnets may result in them attracting across intestines, which poses a critical condition and requires immediate surgery.

Cards and drives

Very strong magnetic fields can destroy records on credit cards, HDDs, and other magnetic media. Keep a distance of at least 10 cm.

Life threat

Health Alert: Neodymium magnets can turn off pacemakers and defibrillators. Stay away if you have medical devices.

Hand protection

Protect your hands. Two large magnets will join instantly with a force of several hundred kilograms, crushing everything in their path. Be careful!

Safe operation

Use magnets with awareness. Their immense force can surprise even professionals. Stay alert and respect their power.

Thermal limits

Control the heat. Exposing the magnet to high heat will destroy its properties and strength.

Sensitization to coating

Warning for allergy sufferers: The Ni-Cu-Ni coating contains nickel. If redness occurs, immediately stop handling magnets and wear gloves.

Combustion hazard

Dust produced during machining of magnets is combustible. Avoid drilling into magnets unless you are an expert.

Precision electronics

GPS units and smartphones are highly susceptible to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.

Material brittleness

NdFeB magnets are sintered ceramics, meaning they are very brittle. Impact of two magnets will cause them shattering into shards.

Attention! Want to know more? Read our article: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98