MP 10x7/3.5x3 / N38 - ring magnet
ring magnet
Catalog no 030180
GTIN/EAN: 5906301811978
Diameter
10 mm [±0,1 mm]
internal diameter Ø
7/3.5 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
1.55 g
Magnetization Direction
↑ axial
Load capacity
1.88 kg / 18.47 N
Magnetic Induction
318.70 mT / 3187 Gs
Coating
[NiCuNi] Nickel
0.824 ZŁ with VAT / pcs + price for transport
0.670 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
or contact us by means of
inquiry form
the contact section.
Lifting power along with form of a magnet can be tested with our
magnetic mass calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical - MP 10x7/3.5x3 / N38 - ring magnet
Specification / characteristics - MP 10x7/3.5x3 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030180 |
| GTIN/EAN | 5906301811978 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 10 mm [±0,1 mm] |
| internal diameter Ø | 7/3.5 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 1.55 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.88 kg / 18.47 N |
| Magnetic Induction ~ ? | 318.70 mT / 3187 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the product - data
The following information constitute the result of a engineering simulation. Values are based on algorithms for the material Nd2Fe14B. Actual conditions might slightly differ from theoretical values. Use these calculations as a reference point when designing systems.
Table 1: Static force (force vs gap) - interaction chart
MP 10x7/3.5x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2813 Gs
281.3 mT
|
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
|
low risk |
| 1 mm |
2373 Gs
237.3 mT
|
1.34 kg / 2.95 LBS
1338.1 g / 13.1 N
|
low risk |
| 2 mm |
1870 Gs
187.0 mT
|
0.83 kg / 1.83 LBS
830.9 g / 8.2 N
|
low risk |
| 3 mm |
1416 Gs
141.6 mT
|
0.48 kg / 1.05 LBS
476.6 g / 4.7 N
|
low risk |
| 5 mm |
785 Gs
78.5 mT
|
0.15 kg / 0.32 LBS
146.4 g / 1.4 N
|
low risk |
| 10 mm |
214 Gs
21.4 mT
|
0.01 kg / 0.02 LBS
10.9 g / 0.1 N
|
low risk |
| 15 mm |
81 Gs
8.1 mT
|
0.00 kg / 0.00 LBS
1.6 g / 0.0 N
|
low risk |
| 20 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 LBS
0.3 g / 0.0 N
|
low risk |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
low risk |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
low risk |
Table 2: Vertical hold (vertical surface)
MP 10x7/3.5x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.83 LBS
376.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.27 kg / 0.59 LBS
268.0 g / 2.6 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 0.37 LBS
166.0 g / 1.6 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.21 LBS
96.0 g / 0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.07 LBS
30.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MP 10x7/3.5x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.56 kg / 1.24 LBS
564.0 g / 5.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.83 LBS
376.0 g / 3.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.41 LBS
188.0 g / 1.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.94 kg / 2.07 LBS
940.0 g / 9.2 N
|
Table 4: Steel thickness (saturation) - power losses
MP 10x7/3.5x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.41 LBS
188.0 g / 1.8 N
|
| 1 mm |
|
0.47 kg / 1.04 LBS
470.0 g / 4.6 N
|
| 2 mm |
|
0.94 kg / 2.07 LBS
940.0 g / 9.2 N
|
| 3 mm |
|
1.41 kg / 3.11 LBS
1410.0 g / 13.8 N
|
| 5 mm |
|
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
|
| 10 mm |
|
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
|
| 11 mm |
|
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
|
| 12 mm |
|
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
|
Table 5: Working in heat (material behavior) - thermal limit
MP 10x7/3.5x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.88 kg / 4.14 LBS
1880.0 g / 18.4 N
|
OK |
| 40 °C | -2.2% |
1.84 kg / 4.05 LBS
1838.6 g / 18.0 N
|
OK |
| 60 °C | -4.4% |
1.80 kg / 3.96 LBS
1797.3 g / 17.6 N
|
|
| 80 °C | -6.6% |
1.76 kg / 3.87 LBS
1755.9 g / 17.2 N
|
|
| 100 °C | -28.8% |
1.34 kg / 2.95 LBS
1338.6 g / 13.1 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MP 10x7/3.5x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.86 kg / 6.30 LBS
4 419 Gs
|
0.43 kg / 0.95 LBS
429 g / 4.2 N
|
N/A |
| 1 mm |
2.46 kg / 5.43 LBS
5 224 Gs
|
0.37 kg / 0.81 LBS
370 g / 3.6 N
|
2.22 kg / 4.89 LBS
~0 Gs
|
| 2 mm |
2.03 kg / 4.49 LBS
4 747 Gs
|
0.31 kg / 0.67 LBS
305 g / 3.0 N
|
1.83 kg / 4.04 LBS
~0 Gs
|
| 3 mm |
1.62 kg / 3.58 LBS
4 242 Gs
|
0.24 kg / 0.54 LBS
244 g / 2.4 N
|
1.46 kg / 3.22 LBS
~0 Gs
|
| 5 mm |
0.96 kg / 2.12 LBS
3 266 Gs
|
0.14 kg / 0.32 LBS
144 g / 1.4 N
|
0.87 kg / 1.91 LBS
~0 Gs
|
| 10 mm |
0.22 kg / 0.49 LBS
1 570 Gs
|
0.03 kg / 0.07 LBS
33 g / 0.3 N
|
0.20 kg / 0.44 LBS
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 LBS
429 Gs
|
0.00 kg / 0.01 LBS
2 g / 0.0 N
|
0.01 kg / 0.03 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
41 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
25 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
16 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
11 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
8 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
6 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MP 10x7/3.5x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.0 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (cracking risk) - collision effects
MP 10x7/3.5x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
35.25 km/h
(9.79 m/s)
|
0.07 J | |
| 30 mm |
60.84 km/h
(16.90 m/s)
|
0.22 J | |
| 50 mm |
78.54 km/h
(21.82 m/s)
|
0.37 J | |
| 100 mm |
111.07 km/h
(30.85 m/s)
|
0.74 J |
Table 9: Coating parameters (durability)
MP 10x7/3.5x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MP 10x7/3.5x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 899 Mx | 19.0 µWb |
| Pc Coefficient | 0.37 | Low (Flat) |
Table 11: Physics of underwater searching
MP 10x7/3.5x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.88 kg | Standard |
| Water (riverbed) |
2.15 kg
(+0.27 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet retains merely ~20% of its nominal pull.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) severely reduces the holding force.
3. Thermal stability
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.37
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See more proposals
Advantages as well as disadvantages of Nd2Fe14B magnets.
Advantages
- They virtually do not lose power, because even after 10 years the performance loss is only ~1% (according to literature),
- Neodymium magnets are distinguished by extremely resistant to loss of magnetic properties caused by magnetic disturbances,
- By applying a lustrous layer of silver, the element presents an proper look,
- Neodymium magnets create maximum magnetic induction on a their surface, which allows for strong attraction,
- Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
- Due to the option of flexible shaping and customization to unique needs, NdFeB magnets can be manufactured in a variety of shapes and sizes, which makes them more universal,
- Key role in modern technologies – they find application in computer drives, drive modules, diagnostic systems, also technologically advanced constructions.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Weaknesses
- At strong impacts they can crack, therefore we recommend placing them in strong housings. A metal housing provides additional protection against damage and increases the magnet's durability.
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture, when using outdoors
- Due to limitations in realizing threads and complicated forms in magnets, we recommend using casing - magnetic mount.
- Possible danger to health – tiny shards of magnets pose a threat, if swallowed, which is particularly important in the context of child safety. It is also worth noting that tiny parts of these magnets can be problematic in diagnostics medical in case of swallowing.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Maximum holding power of the magnet – what affects it?
- with the contact of a sheet made of special test steel, ensuring full magnetic saturation
- with a cross-section minimum 10 mm
- with a surface perfectly flat
- under conditions of gap-free contact (metal-to-metal)
- under vertical force direction (90-degree angle)
- at ambient temperature room level
Impact of factors on magnetic holding capacity in practice
- Distance – the presence of foreign body (rust, dirt, gap) interrupts the magnetic circuit, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Force direction – note that the magnet has greatest strength perpendicularly. Under shear forces, the holding force drops significantly, often to levels of 20-30% of the maximum value.
- Substrate thickness – for full efficiency, the steel must be adequately massive. Paper-thin metal restricts the lifting capacity (the magnet "punches through" it).
- Plate material – low-carbon steel gives the best results. Higher carbon content reduce magnetic permeability and holding force.
- Smoothness – full contact is possible only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
- Thermal conditions – neodymium magnets have a negative temperature coefficient. At higher temperatures they are weaker, and at low temperatures they can be stronger (up to a certain limit).
Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, whereas under shearing force the lifting capacity is smaller. In addition, even a small distance between the magnet and the plate reduces the holding force.
Safe handling of NdFeB magnets
Magnetic media
Data protection: Neodymium magnets can damage payment cards and delicate electronics (pacemakers, hearing aids, timepieces).
Phone sensors
Navigation devices and mobile phones are extremely sensitive to magnetism. Close proximity with a powerful NdFeB magnet can permanently damage the sensors in your phone.
Heat sensitivity
Standard neodymium magnets (N-type) lose power when the temperature exceeds 80°C. This process is irreversible.
Metal Allergy
Some people experience a hypersensitivity to nickel, which is the standard coating for NdFeB magnets. Prolonged contact may cause dermatitis. It is best to use protective gloves.
Physical harm
Mind your fingers. Two large magnets will snap together immediately with a force of several hundred kilograms, crushing anything in their path. Be careful!
Magnet fragility
Beware of splinters. Magnets can fracture upon violent connection, launching sharp fragments into the air. Eye protection is mandatory.
Safe operation
Handle with care. Rare earth magnets act from a distance and snap with massive power, often faster than you can react.
Machining danger
Fire hazard: Neodymium dust is explosive. Do not process magnets in home conditions as this may cause fire.
Pacemakers
For implant holders: Powerful magnets disrupt medical devices. Keep at least 30 cm distance or request help to handle the magnets.
This is not a toy
NdFeB magnets are not intended for children. Accidental ingestion of a few magnets can lead to them attracting across intestines, which constitutes a direct threat to life and requires immediate surgery.
