MP 10x7/3.5x3 / N38 - ring magnet
ring magnet
Catalog no 030180
GTIN: 5906301811978
Diameter [±0,1 mm]
10 mm
internal diameter Ø [±0,1 mm]
7/3.5 mm
Height [±0,1 mm]
3 mm
Weight
3.36 g
Magnetization Direction
↑ axial
Load capacity
0.9 kg / 8.83 N
Magnetic Induction
214.92 mT
Coating
[NiCuNi] nickel
0.824 ZŁ with VAT / pcs + price for transport
0.670 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Pick up the phone and ask
+48 22 499 98 98
alternatively let us know via
our online form
the contact page.
Parameters along with appearance of magnetic components can be tested with our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
MP 10x7/3.5x3 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
- They show exceptional resistance to demagnetization from external field exposure,
- By applying a bright layer of gold, the element gains a clean look,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to form),
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
- Wide application in advanced technical fields – they find application in HDDs, rotating machines, medical equipment or even other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which allows for use in miniature devices
Disadvantages of magnetic elements:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage while also enhances its overall resistance,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
- Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
- Possible threat related to magnet particles may arise, if ingested accidentally, which is important in the context of child safety. Furthermore, small elements from these devices might hinder health screening if inside the body,
- In cases of mass production, neodymium magnet cost may be a barrier,
Breakaway strength of the magnet in ideal conditions – what it depends on?
The given holding capacity of the magnet represents the highest holding force, assessed in the best circumstances, that is:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- at room temperature
What influences lifting capacity in practice
The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate decreases the lifting capacity.
Precautions
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets should not be around children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Magnets made of neodymium are particularly fragile, resulting in shattering.
Neodymium magnets are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Exercise caution!
To show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.