tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are in stock for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase powerful magnet? Magnetic holders in solid and airtight enclosure are ideally suited for use in challenging weather conditions, including in the rain and snow see more...

magnets with holders

Magnetic holders can be used to facilitate production processes, exploring underwater areas, or finding meteors from gold see...

Enjoy delivery of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 10x7/3.5x3 / N38 - ring magnet

ring magnet

Catalog no 030180

GTIN: 5906301811978

5

Diameter [±0,1 mm]

10 mm

internal diameter Ø [±0,1 mm]

7/3.5 mm

Height [±0,1 mm]

3 mm

Weight

3.36 g

Magnetization Direction

↑ axial

Load capacity

0.9 kg / 8.83 N

Magnetic Induction

214.92 mT

Coating

[NiCuNi] nickel

0.82 with VAT / pcs + price for transport

0.67 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.67 ZŁ
0.82 ZŁ
price from 680 pcs
0.60 ZŁ
0.74 ZŁ
price from 1360 pcs
0.59 ZŁ
0.73 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MP 10x7/3.5x3 / N38 - ring magnet

Specification/characteristics MP 10x7/3.5x3 / N38 - ring magnet
properties
values
Cat. no.
030180
GTIN
5906301811978
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
10 mm [±0,1 mm]
internal diameter Ø
7/3.5 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
3.36 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.9 kg / 8.83 N
Magnetic Induction ~ ?
214.92 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to unique properties, neodymium magnet MP 10x7/3.5x3 / N38 in a ring-shaped form finds extensive use in various industries. Thanks to a powerful magnetic field of 0.9 kg, which can be described as strength, they are key in applications that require high magnetic power in a relatively small area. Applications of MP 10x7/3.5x3 / N38 magnets include electric motors, generating systems, sound devices, and many other devices that use magnets for generating motion or storing energy. Despite their powerful strength, they have a relatively low weight of 3.36 grams, which makes them more practical compared to heavier alternatives.
Ring magnets work due to their atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This field is ideal for applications in systems requiring motion control. Additionally, their resistance to high temperatures and demagnetization makes them indispensable in industry.
Ring magnets have a wide range of applications in many industries, such as production of electronic devices, such as speakers and electric motors, automotive, where they are used in brushless electric motors, and medicine, where they are used in precision diagnostic devices. Thanks to their temperature resistance and precision makes them indispensable in challenging industrial conditions.
Ring magnets stand out extraordinary pulling power, resistance to high temperatures, and precision in generating the magnetic field. Their unique ring form allows for effective use in devices such as motors or speakers. Moreover, these magnets are significantly stronger and more versatile than ferrite counterparts, making them an ideal choice in the automotive, electronics, and medical industries.
Ring magnets perform excellently across a wide range of temperatures. Their magnetic properties remain stable, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium ring magnet with classification N52 and N50 is a powerful and highly strong magnetic product shaped like a ring, that offers strong holding power and universal application. Competitive price, availability, stability and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They retain their attractive force for around ten years – the loss is just ~1% (according to analyses),
  • They remain magnetized despite exposure to magnetic surroundings,
  • In other words, due to the metallic nickel coating, the magnet obtains an professional appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their functional possibilities,
  • Important function in new technology industries – they serve a purpose in hard drives, rotating machines, diagnostic apparatus and technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which allows for use in miniature devices

Disadvantages of neodymium magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also reinforces its overall resistance,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
  • Safety concern related to magnet particles may arise, especially if swallowed, which is significant in the context of child safety. It should also be noted that minuscule fragments from these magnets can complicate medical imaging after being swallowed,
  • Due to a complex production process, their cost is above average,

Handle Neodymium Magnets Carefully

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are noted for being fragile, which can cause them to crumble.

Neodymium magnets are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or in their path when they attract. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Safety precautions!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98