tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. Practically all "magnets" in our store are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for fishing F300 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight and durable enclosure are perfect for use in challenging weather, including snow and rain more information...

magnetic holders

Holders with magnets can be used to facilitate manufacturing, exploring underwater areas, or finding space rocks from gold read...

Enjoy shipping of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping in 3 days! Bestseller

MP 10x7/3.5x3 / N38 - neodymium magnet

ring magnet

catalog number 030180

GTIN: 5906301811978

5.0

external diameter Ø

10 mm [±0,1 mm]

internal diameter Ø

7/3.5 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.90 kg / 8.83 N

magnetic induction ~

214.92 mT / 2,149 Gs

max. temperature

≤ 80 °C

0.82 gross price (including VAT) / pcs +

0.67 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.67 ZŁ
0.82 ZŁ
price from 680 pcs
0.60 ZŁ
0.74 ZŁ
price from 1360 pcs
0.59 ZŁ
0.73 ZŁ

Want to talk about magnets?

Give us a call tel: +48 888 99 98 98 or contact us via form on our website. You can check the mass as well as the shape of neodymium magnets in our force calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: ring magnet 10x7/3.5x3 / N38 ↑ axial

Characteristics: ring magnet 10x7/3.5x3 / N38 ↑ axial
Properties
Values
catalog number
030180
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
external diameter Ø
10 mm [±0,1 mm]
internal diameter Ø
7/3.5 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.90 kg / 8.83 N
magnetic induction ~ ?
214.92 mT / 2,149 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
3.36 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Due to specific properties, neodymium magnet MP 10x7/3.5x3 / N38 in a ring form finds extensive use in various industries. Thanks to a powerful magnetic field of 0.90 kg, which can be described as lifting capacity, they are key in applications that require strong magnetism in a compact space. Usage of MP 10x7/3.5x3 / N38 magnets include electrical mechanisms, generators, audio systems, and several other devices that use magnets for generating motion or storing energy. Despite their significant strength, they have a relatively low weight of 3.36 grams, which makes them more convenient to use compared to heavier alternatives.
Ring magnets work due to their atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for generating a strong and precise magnetic field. This makes them perfect for devices such as stepper motors or industrial robots. Moreover, ring magnets are resistant to demagnetization.
Ring magnets have a wide range of applications in many industries, such as electronics, e.g., in the production of speakers or electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Thanks to their temperature resistance and precision makes them indispensable in challenging industrial conditions.
Their uniqueness comes from extraordinary pulling power, resistance to high temperatures, and precision in generating the magnetic field. Thanks to their ring shape allows for application in devices requiring concentrated magnetic fields. Moreover, these magnets are significantly stronger and more versatile than ferrite counterparts, making them an ideal choice in the automotive, electronics, and medical industries.
Ring magnets perform excellently across a wide range of temperatures. Their magnetic properties remain stable, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.

List recommended items

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time - after about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Key role in modern technologies – find application in computer drives, electric drive mechanisms, medical apparatus or other modern machines.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets pose a threat, if swallowed, which is crucial in the context of children's health. Furthermore, small elements of these devices are able to complicate diagnosis when they are in the body.

Be Cautious with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are fragile and can easily crack and get damaged.

Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is essential to keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98