MW 10x20 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010007
GTIN: 5906301810063
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
20 mm
Weight
11.78 g
Magnetization Direction
↑ axial
Load capacity
11.06 kg / 108.46 N
Magnetic Induction
600.73 mT
Coating
[NiCuNi] nickel
5.03 ZŁ with VAT / pcs + price for transport
4.09 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate the price?
Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.
Orders placed by 14:00 are shipped the same day.
MW 10x20 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of silver to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as epoxy, to preserve them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable power, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- They protect against demagnetization induced by ambient magnetic fields very well,
- By applying a bright layer of nickel, the element gains a modern look,
- They possess significant magnetic force measurable at the magnet’s surface,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to form),
- With the option for customized forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
- Important function in new technology industries – they find application in HDDs, electric drives, medical equipment or even other advanced devices,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment, especially when used outside, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
- Safety concern linked to microscopic shards may arise, if ingested accidentally, which is significant in the protection of children. Moreover, tiny components from these products may interfere with diagnostics if inside the body,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Precautions
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
It is important to maintain neodymium magnets out of reach from children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Magnets made of neodymium are extremely fragile, leading to breaking.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If the joining of neodymium magnets is not under control, then they may crumble and crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.
Avoid bringing neodymium magnets close to a phone or GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Exercise caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.