tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. All magnesy in our store are in stock for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase strong magnet? Holders with magnets in airtight and durable enclosure are excellent for use in challenging climate conditions, including during rain and snow read...

magnets with holders

Magnetic holders can be used to improve production, exploring underwater areas, or finding meteors made of metal see...

Order is shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x20 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010007

GTIN: 5906301810063

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

20 mm

Weight

11.78 g

Magnetization Direction

↑ axial

Load capacity

11.06 kg / 108.46 N

Magnetic Induction

600.73 mT

Coating

[NiCuNi] nickel

4.26 with VAT / pcs + price for transport

3.46 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.46 ZŁ
4.26 ZŁ
price from 200 pcs
3.25 ZŁ
4.00 ZŁ
price from 750 pcs
3.04 ZŁ
3.75 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 888 99 98 98 otherwise let us know via request form the contact form page.
Parameters as well as shape of a neodymium magnet can be analyzed using our magnetic calculator.

Order by 14:00 and we’ll ship today!

MW 10x20 / N38 - cylindrical magnet

Specification/characteristics MW 10x20 / N38 - cylindrical magnet
properties
values
Cat. no.
010007
GTIN
5906301810063
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
11.78 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
11.06 kg / 108.46 N
Magnetic Induction ~ ?
600.73 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 10x20 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed ordinary ferrite magnets. Because of their power, they are frequently employed in products that need strong adhesion. The standard temperature resistance of these magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet designated MW 10x20 / N38 and a magnetic lifting capacity of 11.06 kg has a weight of only 11.78 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in various applications, they can also pose certain risk. Due to their strong magnetic power, they can attract metallic objects with significant force, which can lead to damaging skin as well as other surfaces, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with other metals and then forming and heat treating. Their unmatched magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as gold, to shield them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet in classes N52 and N50 is a powerful and strong metal object with the shape of a cylinder, that provides strong holding power and universal application. Competitive price, fast shipping, ruggedness and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They retain their magnetic properties for almost 10 years – the drop is just ~1% (according to analyses),
  • They remain magnetized despite exposure to strong external fields,
  • By applying a reflective layer of silver, the element gains a modern look,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for accurate shaping or adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Significant impact in modern technologies – they find application in data storage devices, rotating machines, clinical machines as well as sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of magnetic elements:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall durability,
  • They lose strength at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a wet environment – during outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
  • Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
  • Safety concern due to small fragments may arise, especially if swallowed, which is crucial in the protection of children. It should also be noted that small elements from these devices may hinder health screening if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum lifting capacity of the magnetwhat it depends on?

The given lifting capacity of the magnet represents the maximum lifting force, calculated in a perfect environment, specifically:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Practical lifting capacity: influencing factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under perpendicular forces, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the lifting capacity.

Be Cautious with Neodymium Magnets

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are known for being fragile, which can cause them to shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.

Safety precautions!

To show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98