MW 10x20 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010007
GTIN/EAN: 5906301810063
Diameter Ø
10 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
11.78 g
Magnetization Direction
↑ axial
Load capacity
2.23 kg / 21.88 N
Magnetic Induction
600.73 mT / 6007 Gs
Coating
[NiCuNi] Nickel
4.92 ZŁ with VAT / pcs + price for transport
4.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
alternatively let us know through
our online form
through our site.
Weight along with appearance of magnetic components can be reviewed using our
magnetic calculator.
Order by 14:00 and we’ll ship today!
Technical of the product - MW 10x20 / N38 - cylindrical magnet
Specification / characteristics - MW 10x20 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010007 |
| GTIN/EAN | 5906301810063 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 20 mm [±0,1 mm] |
| Weight | 11.78 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.23 kg / 21.88 N |
| Magnetic Induction ~ ? | 600.73 mT / 6007 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical simulation of the product - technical parameters
The following values represent the direct effect of a engineering analysis. Values were calculated on models for the class Nd2Fe14B. Actual performance might slightly differ from theoretical values. Please consider these data as a reference point when designing systems.
Table 1: Static force (pull vs gap) - interaction chart
MW 10x20 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
6003 Gs
600.3 mT
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
strong |
| 1 mm |
4815 Gs
481.5 mT
|
1.44 kg / 3.16 lbs
1435.1 g / 14.1 N
|
weak grip |
| 2 mm |
3743 Gs
374.3 mT
|
0.87 kg / 1.91 lbs
867.2 g / 8.5 N
|
weak grip |
| 3 mm |
2869 Gs
286.9 mT
|
0.51 kg / 1.12 lbs
509.3 g / 5.0 N
|
weak grip |
| 5 mm |
1696 Gs
169.6 mT
|
0.18 kg / 0.39 lbs
177.9 g / 1.7 N
|
weak grip |
| 10 mm |
570 Gs
57.0 mT
|
0.02 kg / 0.04 lbs
20.1 g / 0.2 N
|
weak grip |
| 15 mm |
256 Gs
25.6 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
weak grip |
| 20 mm |
137 Gs
13.7 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
weak grip |
| 30 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
weak grip |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Shear force (vertical surface)
MW 10x20 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.45 kg / 0.98 lbs
446.0 g / 4.4 N
|
| 1 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 10x20 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.67 kg / 1.47 lbs
669.0 g / 6.6 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.45 kg / 0.98 lbs
446.0 g / 4.4 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.49 lbs
223.0 g / 2.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.12 kg / 2.46 lbs
1115.0 g / 10.9 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 10x20 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.49 lbs
223.0 g / 2.2 N
|
| 1 mm |
|
0.56 kg / 1.23 lbs
557.5 g / 5.5 N
|
| 2 mm |
|
1.12 kg / 2.46 lbs
1115.0 g / 10.9 N
|
| 3 mm |
|
1.67 kg / 3.69 lbs
1672.5 g / 16.4 N
|
| 5 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 10 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 11 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 12 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 10x20 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
OK |
| 40 °C | -2.2% |
2.18 kg / 4.81 lbs
2180.9 g / 21.4 N
|
OK |
| 60 °C | -4.4% |
2.13 kg / 4.70 lbs
2131.9 g / 20.9 N
|
OK |
| 80 °C | -6.6% |
2.08 kg / 4.59 lbs
2082.8 g / 20.4 N
|
|
| 100 °C | -28.8% |
1.59 kg / 3.50 lbs
1587.8 g / 15.6 N
|
Table 6: Two magnets (repulsion) - field range
MW 10x20 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.45 kg / 38.46 lbs
6 140 Gs
|
2.62 kg / 5.77 lbs
2617 g / 25.7 N
|
N/A |
| 1 mm |
14.15 kg / 31.20 lbs
10 813 Gs
|
2.12 kg / 4.68 lbs
2123 g / 20.8 N
|
12.74 kg / 28.08 lbs
~0 Gs
|
| 2 mm |
11.23 kg / 24.75 lbs
9 631 Gs
|
1.68 kg / 3.71 lbs
1684 g / 16.5 N
|
10.11 kg / 22.28 lbs
~0 Gs
|
| 3 mm |
8.78 kg / 19.35 lbs
8 515 Gs
|
1.32 kg / 2.90 lbs
1316 g / 12.9 N
|
7.90 kg / 17.41 lbs
~0 Gs
|
| 5 mm |
5.21 kg / 11.48 lbs
6 559 Gs
|
0.78 kg / 1.72 lbs
781 g / 7.7 N
|
4.69 kg / 10.33 lbs
~0 Gs
|
| 10 mm |
1.39 kg / 3.07 lbs
3 391 Gs
|
0.21 kg / 0.46 lbs
209 g / 2.0 N
|
1.25 kg / 2.76 lbs
~0 Gs
|
| 20 mm |
0.16 kg / 0.35 lbs
1 140 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
165 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
107 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MW 10x20 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 8.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.5 cm |
| Car key | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MW 10x20 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
13.95 km/h
(3.88 m/s)
|
0.09 J | |
| 30 mm |
24.03 km/h
(6.68 m/s)
|
0.26 J | |
| 50 mm |
31.03 km/h
(8.62 m/s)
|
0.44 J | |
| 100 mm |
43.88 km/h
(12.19 m/s)
|
0.88 J |
Table 9: Surface protection spec
MW 10x20 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 10x20 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 5 223 Mx | 52.2 µWb |
| Pc Coefficient | 1.21 | High (Stable) |
Table 11: Physics of underwater searching
MW 10x20 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.23 kg | Standard |
| Water (riverbed) |
2.55 kg
(+0.32 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet retains only approx. 20-30% of its max power.
2. Plate thickness effect
*Thin metal sheet (e.g. 0.5mm PC case) significantly limits the holding force.
3. Temperature resistance
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.21
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Pros as well as cons of Nd2Fe14B magnets.
Benefits
- Their power is maintained, and after around ten years it drops only by ~1% (theoretically),
- They retain their magnetic properties even under strong external field,
- A magnet with a shiny silver surface has better aesthetics,
- The surface of neodymium magnets generates a concentrated magnetic field – this is a distinguishing feature,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can work (depending on the form) even at a temperature of 230°C or more...
- Thanks to versatility in forming and the capacity to modify to specific needs,
- Significant place in advanced technology sectors – they are used in computer drives, electric motors, diagnostic systems, and multitasking production systems.
- Thanks to efficiency per cm³, small magnets offer high operating force, with minimal size,
Weaknesses
- To avoid cracks under impact, we recommend using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets experience a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we advise using water-impermeable magnets made of rubber, plastic or other material resistant to moisture
- Due to limitations in realizing threads and complicated shapes in magnets, we recommend using a housing - magnetic holder.
- Health risk to health – tiny shards of magnets are risky, when accidentally swallowed, which is particularly important in the context of child health protection. It is also worth noting that tiny parts of these products are able to disrupt the diagnostic process medical when they are in the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Holding force characteristics
Maximum lifting force for a neodymium magnet – what contributes to it?
- with the use of a sheet made of special test steel, ensuring maximum field concentration
- with a thickness of at least 10 mm
- with an ground touching surface
- without the slightest air gap between the magnet and steel
- under axial force direction (90-degree angle)
- at temperature room level
Lifting capacity in real conditions – factors
- Gap (between the magnet and the plate), as even a tiny distance (e.g. 0.5 mm) leads to a drastic drop in lifting capacity by up to 50% (this also applies to varnish, rust or debris).
- Loading method – catalog parameter refers to pulling vertically. When applying parallel force, the magnet holds significantly lower power (often approx. 20-30% of maximum force).
- Plate thickness – insufficiently thick plate causes magnetic saturation, causing part of the power to be wasted into the air.
- Material composition – different alloys attracts identically. High carbon content weaken the attraction effect.
- Surface finish – full contact is possible only on polished steel. Any scratches and bumps reduce the real contact area, reducing force.
- Thermal environment – temperature increase results in weakening of force. Check the maximum operating temperature for a given model.
Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the holding force is lower. Moreover, even a minimal clearance between the magnet’s surface and the plate lowers the holding force.
Precautions when working with NdFeB magnets
Hand protection
Big blocks can smash fingers in a fraction of a second. Do not place your hand between two strong magnets.
Handling rules
Handle with care. Neodymium magnets attract from a distance and snap with massive power, often faster than you can move away.
Keep away from electronics
Remember: rare earth magnets produce a field that disrupts sensitive sensors. Keep a separation from your phone, device, and GPS.
Eye protection
Despite metallic appearance, the material is delicate and not impact-resistant. Avoid impacts, as the magnet may shatter into sharp, dangerous pieces.
No play value
These products are not intended for children. Swallowing multiple magnets can lead to them attracting across intestines, which constitutes a direct threat to life and requires immediate surgery.
Protect data
Do not bring magnets near a wallet, computer, or screen. The magnetism can destroy these devices and erase data from cards.
Combustion hazard
Drilling and cutting of neodymium magnets carries a risk of fire risk. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Nickel coating and allergies
It is widely known that the nickel plating (standard magnet coating) is a strong allergen. If you have an allergy, prevent touching magnets with bare hands and select coated magnets.
ICD Warning
Patients with a ICD should keep an large gap from magnets. The magnetic field can stop the operation of the implant.
Operating temperature
Regular neodymium magnets (N-type) undergo demagnetization when the temperature surpasses 80°C. The loss of strength is permanent.
