MW 14x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010391
GTIN: 5906301811084
Diameter Ø [±0,1 mm]
14 mm
Height [±0,1 mm]
10 mm
Weight
11.55 g
Magnetization Direction
↑ axial
Load capacity
7.74 kg / 75.9 N
Magnetic Induction
507.48 mT
Coating
[NiCuNi] nickel
6.84 ZŁ with VAT / pcs + price for transport
5.56 ZŁ net + 23% VAT / pcs
5.37 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Not sure where to buy?
Call us now
+48 22 499 98 98
or send us a note by means of
form
our website.
Lifting power as well as form of neodymium magnets can be calculated on our
force calculator.
Same-day processing for orders placed before 14:00.
MW 14x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as nickel, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional field intensity, neodymium magnets offer the following advantages:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- They remain magnetized despite exposure to strong external fields,
- By applying a reflective layer of nickel, the element gains a clean look,
- The outer field strength of the magnet shows advanced magnetic properties,
- With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the form),
- With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
- Significant impact in advanced technical fields – they are used in hard drives, electric motors, healthcare devices along with other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall resistance,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
- Health risk from tiny pieces may arise, if ingested accidentally, which is important in the protection of children. Furthermore, small elements from these products have the potential to disrupt scanning after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum magnetic pulling force – what affects it?
The given strength of the magnet represents the optimal strength, measured under optimal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet and the plate reduces the load capacity.
Caution with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets far from youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Magnets made of neodymium are particularly delicate, resulting in their breakage.
Neodymium magnets are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will crack or alternatively crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.
Safety precautions!
So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.