tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. All "neodymium magnets" in our store are available for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight and durable steel casing are perfect for use in difficult, demanding climate conditions, including during rain and snow more...

magnets with holders

Magnetic holders can be used to enhance production processes, underwater discoveries, or locating space rocks from gold see more...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 14x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010391

GTIN: 5906301811084

5

Diameter Ø [±0,1 mm]

14 mm

Height [±0,1 mm]

10 mm

Weight

11.55 g

Magnetization Direction

↑ axial

Load capacity

7.74 kg / 75.9 N

Magnetic Induction

507.48 mT

Coating

[NiCuNi] nickel

6.84 with VAT / pcs + price for transport

5.56 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.56 ZŁ
6.84 ZŁ
price from 150 pcs
5.23 ZŁ
6.43 ZŁ
price from 450 pcs
4.89 ZŁ
6.02 ZŁ

Hunting for a discount?

Call us +48 22 499 98 98 if you prefer send us a note through form the contact form page.
Parameters along with form of magnetic components can be estimated on our force calculator.

Same-day shipping for orders placed before 14:00.

MW 14x10 / N38 - cylindrical magnet

Specification/characteristics MW 14x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010391
GTIN
5906301811084
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
14 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
11.55 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.74 kg / 75.9 N
Magnetic Induction ~ ?
507.48 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 14x10 / N38 are magnets made of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are frequently used in products that need strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet with the designation MW 14x10 / N38 with a magnetic force 7.74 kg weighs only 11.55 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the current information and offers, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in many applications, they can also constitute certain risk. Because of their strong magnetic power, they can attract metallic objects with great force, which can lead to crushing skin or other surfaces, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the very strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and heat treating. Their unmatched magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as gold, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical magnet of class N50 and N52 is a strong and powerful metal object shaped like a cylinder, providing high force and broad usability. Attractive price, availability, ruggedness and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior holding force, neodymium magnets have these key benefits:

  • They do not lose their even over around 10 years – the decrease of strength is only ~1% (based on measurements),
  • They protect against demagnetization induced by ambient electromagnetic environments remarkably well,
  • The use of a mirror-like nickel surface provides a eye-catching finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • The ability for precise shaping or adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Wide application in modern technologies – they are used in hard drives, electromechanical systems, diagnostic apparatus and high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall strength,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create threads in the magnet – the use of a external casing is recommended,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is crucial in the family environments. Additionally, minuscule fragments from these assemblies may disrupt scanning if inside the body,
  • Due to a complex production process, their cost is relatively high,

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, calculated in ideal conditions, namely:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet is influenced by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the load capacity is reduced by as much as 75%. Moreover, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Exercise Caution with Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will jump and also contact together within a distance of several to around 10 cm from each other.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

 Keep neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Magnets made of neodymium are highly susceptible to damage, leading to shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Warning!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98