MW 14x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010391
GTIN: 5906301811084
Diameter Ø [±0,1 mm]
14 mm
Height [±0,1 mm]
10 mm
Weight
11.55 g
Magnetization Direction
↑ axial
Load capacity
7.74 kg / 75.9 N
Magnetic Induction
507.48 mT
Coating
[NiCuNi] nickel
6.84 ZŁ with VAT / pcs + price for transport
5.56 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 22 499 98 98
or contact us using
our online form
through our site.
Force and structure of a neodymium magnet can be checked with our
online calculation tool.
Same-day processing for orders placed before 14:00.
MW 14x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as silver, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- They have unchanged lifting capacity, and over nearly ten years their performance decreases symbolically – ~1% (in testing),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a bright layer of nickel, the element gains a sleek look,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- With the option for fine forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Wide application in cutting-edge sectors – they serve a purpose in HDDs, electromechanical systems, clinical machines as well as high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in small systems
Disadvantages of neodymium magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall durability,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
- Health risk linked to microscopic shards may arise, when consumed by mistake, which is important in the family environments. It should also be noted that minuscule fragments from these products may complicate medical imaging after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Magnetic strength at its maximum – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, determined in the best circumstances, specifically:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- in normal thermal conditions
Determinants of lifting force in real conditions
Practical lifting force is dependent on elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, however under shearing force the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.
Be Cautious with Neodymium Magnets
Neodymium magnets can become demagnetized at high temperatures.
Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Magnets made of neodymium are delicate as well as can easily break as well as get damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
It is important to maintain neodymium magnets out of reach from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Exercise caution!
To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.