MW 14x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010391
GTIN: 5906301811084
Diameter Ø [±0,1 mm]
14 mm
Height [±0,1 mm]
10 mm
Weight
11.55 g
Magnetization Direction
↑ axial
Load capacity
7.74 kg / 75.9 N
Magnetic Induction
507.48 mT
Coating
[NiCuNi] nickel
6.84 ZŁ with VAT / pcs + price for transport
5.56 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Contact us by phone
+48 888 99 98 98
or get in touch through
contact form
the contact section.
Parameters and structure of a neodymium magnet can be calculated on our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
MW 14x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their immense strength, neodymium magnets offer the following advantages:
- They have stable power, and over more than ten years their attraction force decreases symbolically – ~1% (according to theory),
- They show strong resistance to demagnetization from external field exposure,
- By applying a reflective layer of gold, the element gains a clean look,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which expands their application range,
- Wide application in modern technologies – they are used in data storage devices, electromechanical systems, medical equipment as well as other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
- Safety concern from tiny pieces may arise, in case of ingestion, which is important in the health of young users. It should also be noted that tiny components from these products can interfere with diagnostics after being swallowed,
- Due to expensive raw materials, their cost is considerably higher,
Detachment force of the magnet in optimal conditions – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, measured in ideal conditions, specifically:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
Do not give neodymium magnets to children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are incredibly fragile, they easily crack as well as can become damaged.
Neodymium magnetic are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Safety precautions!
To show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.
