UMGGZ 22x6 [M4] GZ / N38 - rubber magnetic holder external thread
rubber magnetic holder external thread
Catalog no 340310
GTIN: 5906301814726
Diameter Ø [±0,1 mm]
22 mm
Height [±0,1 mm]
6 mm
Weight
15 g
Load capacity
5.1 kg / 50.01 N
7.38 ZŁ with VAT / pcs + price for transport
6.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Give us a call
+48 888 99 98 98
otherwise let us know via
request form
the contact page.
Lifting power and shape of magnets can be reviewed on our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
UMGGZ 22x6 [M4] GZ / N38 - rubber magnetic holder external thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- Their magnetic field remains stable, and after around ten years, it drops only by ~1% (according to research),
- They remain magnetized despite exposure to magnetic noise,
- The use of a polished silver surface provides a refined finish,
- Magnetic induction on the surface of these magnets is notably high,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Significant impact in new technology industries – they are utilized in HDDs, electric motors, diagnostic apparatus as well as sophisticated instruments,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of rare earth magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
- Health risk due to small fragments may arise, if ingested accidentally, which is crucial in the family environments. Additionally, tiny components from these products might complicate medical imaging after being swallowed,
- In cases of tight budgets, neodymium magnet cost may not be economically viable,
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given strength of the magnet means the optimal strength, calculated under optimal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a polished side
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet is determined by in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap {between} the magnet and the plate reduces the holding force.
Be Cautious with Neodymium Magnets
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are fragile and can easily break and get damaged.
Neodymium magnetic are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Keep neodymium magnets far from youngest children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Safety rules!
In order to show why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.