tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. All "magnets" in our store are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for searching F400 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in solid and airtight steel enclosure are perfect for use in difficult weather conditions, including snow and rain more information...

magnetic holders

Holders with magnets can be applied to improve production, exploring underwater areas, or finding meteors made of metal see...

Enjoy delivery of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGZ 22x6 [M4] GZ / N38 - rubber magnetic holder external thread

rubber magnetic holder external thread

Catalog no 340310

GTIN: 5906301814726

5

Diameter Ø [±0,1 mm]

22 mm

Height [±0,1 mm]

6 mm

Weight

15 g

Load capacity

5.1 kg / 50.01 N

7.38 with VAT / pcs + price for transport

6.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6.00 ZŁ
7.38 ZŁ
price from 100 pcs
5.28 ZŁ
6.49 ZŁ

Looking for a better price?

Contact us by phone +48 22 499 98 98 or contact us by means of contact form through our site.
Strength along with appearance of magnets can be reviewed with our magnetic calculator.

Same-day shipping for orders placed before 14:00.

UMGGZ 22x6 [M4] GZ / N38 - rubber magnetic holder external thread

Specification/characteristics UMGGZ 22x6 [M4] GZ / N38 - rubber magnetic holder external thread
properties
values
Cat. no.
340310
GTIN
5906301814726
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
22 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
15 g [±0,1 mm]
Load capacity ~ ?
5.1 kg / 50.01 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • Their magnetic field is maintained, and after approximately 10 years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by ambient magnetic influence effectively,
  • Thanks to the shiny finish and silver coating, they have an aesthetic appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
  • Important function in modern technologies – they serve a purpose in computer drives, electromechanical systems, medical equipment or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in compact constructions

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and additionally enhances its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
  • Safety concern from tiny pieces may arise, especially if swallowed, which is significant in the protection of children. Furthermore, minuscule fragments from these devices might complicate medical imaging after being swallowed,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Maximum lifting capacity of the magnetwhat contributes to it?

The given holding capacity of the magnet means the highest holding force, determined in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Key elements affecting lifting force

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Safety Precautions

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

  Magnets are not toys, children should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets bounce and also touch each other mutually within a distance of several to almost 10 cm from each other.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are fragile and can easily crack as well as get damaged.

Neodymium magnetic are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Safety rules!

To show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98