tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All magnesy in our store are available for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for searching F400 GOLD

Where to purchase very strong magnet? Magnet holders in airtight and durable enclosure are perfect for use in difficult, demanding weather conditions, including during rain and snow check...

magnetic holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or locating meteors made of ore see...

Enjoy shipping of your order on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x250 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130362

GTIN: 5906301813101

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

250 mm

Weight

1285 g

824.10 with VAT / pcs + price for transport

670.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
670.00 ZŁ
824.10 ZŁ
price from 5 pcs
636.50 ZŁ
782.90 ZŁ
price from 10 pcs
603.00 ZŁ
741.69 ZŁ

Can't decide what to choose?

Pick up the phone and ask +48 888 99 98 98 alternatively contact us via form the contact page.
Specifications along with form of a neodymium magnet can be tested on our our magnetic calculator.

Same-day processing for orders placed before 14:00.

SM 32x250 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x250 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130362
GTIN
5906301813101
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
250 mm [±0,1 mm]
Weight
1285 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a construction made of stainless steel mostly AISI304. In this way, it is possible to precisely remove ferromagnetic elements from the mixture. A key aspect of its operation is the use of repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, are employed in metal separation, food production as well as recycling. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets anchored in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the more effective. But, the effectiveness of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be more compressed. Otherwise, when the magnet is thick, the force lines will be longer and reach further.
For creating the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, type AISI 316 steel is recommended thanks to its outstanding corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Magnetic field measurements is recommended be carried out every two years. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They do not lose their magnetism, even after approximately 10 years – the loss of strength is only ~1% (theoretically),
  • They protect against demagnetization induced by surrounding magnetic fields effectively,
  • Because of the reflective layer of nickel, the component looks aesthetically refined,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their usage potential,
  • Important function in modern technologies – they are used in data storage devices, electric drives, healthcare devices or even technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in miniature devices

Disadvantages of rare earth magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally enhances its overall robustness,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of rubber,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Potential hazard from tiny pieces may arise, in case of ingestion, which is notable in the family environments. Furthermore, small elements from these magnets have the potential to complicate medical imaging after being swallowed,
  • Due to a complex production process, their cost is considerably higher,

Maximum lifting capacity of the magnetwhat affects it?

The given strength of the magnet corresponds to the optimal strength, measured under optimal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Determinants of lifting force in real conditions

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.

Caution with Neodymium Magnets

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are delicate as well as can easily crack as well as get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Warning!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98