tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" in our store are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in airtight, solid enclosure are perfect for use in difficult climate conditions, including during rain and snow more information...

magnetic holders

Holders with magnets can be applied to improve production processes, exploring underwater areas, or finding meteors made of ore check...

Enjoy delivery of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

MW 8x8 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010106

GTIN: 5906301811053

5

Diameter Ø [±0,1 mm]

8 mm

Height [±0,1 mm]

8 mm

Weight

3.02 g

Magnetization Direction

↑ axial

Load capacity

3.54 kg / 34.72 N

Magnetic Induction

553.67 mT

Coating

[NiCuNi] nickel

1.341 with VAT / pcs + price for transport

1.090 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.090 ZŁ
1.341 ZŁ
price from 600 pcs
1.025 ZŁ
1.260 ZŁ
price from 2300 pcs
0.959 ZŁ
1.180 ZŁ

Want to negotiate?

Contact us by phone +48 888 99 98 98 alternatively let us know via inquiry form through our site.
Specifications along with structure of magnets can be analyzed on our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 8x8 / N38 - cylindrical magnet

Specification/characteristics MW 8x8 / N38 - cylindrical magnet
properties
values
Cat. no.
010106
GTIN
5906301811053
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
8 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
3.02 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.54 kg / 34.72 N
Magnetic Induction ~ ?
553.67 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Our cylinder magnets are made of the strongest magnetic material in the world. As a result, they offer huge pull force while maintaining a small size. Model MW 8x8 / N38 has a pull force of approx. 3.54 kg. Their symmetrical shape makes them perfect for installing in sockets, electric motors and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
We recommend installation by gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Professional industrial adhesives are best, which are safe for the anti-corrosion layer. Avoid press-fitting with force, as neodymium is a brittle material and is prone to chipping upon impact.
The grade symbol (e.g. N38, N52) defines the magnetic energy density of the material. Larger numbers indicate a stronger magnetic field for the same size. The universal option is N38, which provides an optimal price-to-power ratio. For projects requiring extreme strength, we recommend grade N52, which is the strongest commercially available sinter.
Neodymium magnets are coated with a protective layer of Ni-Cu-Ni (Nickel-Copper-Nickel), which provides basic protection. However, they are not fully waterproof. In outdoor or wet conditions, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we recommend hermetic sealing or ordering a special version.
These products are the heart of many industrial devices. They are utilized in electric drives and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are indispensable in Hall effect sensors.
The maximum operating temperature for the standard version is 80°C (176°F). Higher temperatures can cause irreversible demagnetization. For work in hot environments (e.g. 120°C, 150°C, 200°C), we offer H, SH, or UH series on request. It is worth knowing that neodymium magnets do not tolerate thermal shock well.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional pulling force, neodymium magnets offer the following advantages:

  • They have constant strength, and over more than 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They show exceptional resistance to demagnetization from external field exposure,
  • By applying a shiny layer of gold, the element gains a modern look,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for tailored forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Important function in new technology industries – they serve a purpose in data storage devices, electromechanical systems, clinical machines along with sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall strength,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is crucial in the protection of children. Additionally, miniature parts from these assemblies have the potential to hinder health screening after being swallowed,
  • Due to expensive raw materials, their cost is above average,

Maximum magnetic pulling forcewhat it depends on?

The given pulling force of the magnet corresponds to the maximum force, determined in ideal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Key elements affecting lifting force

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are especially delicate, which leads to shattering.

Magnets made of neodymium are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will crack or alternatively crumble with uncontrolled joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Safety precautions!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98