MW 8x8 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010106
GTIN: 5906301811053
Diameter Ø [±0,1 mm]
8 mm
Height [±0,1 mm]
8 mm
Weight
3.02 g
Magnetization Direction
↑ axial
Load capacity
3.54 kg / 34.72 N
Magnetic Induction
553.67 mT
Coating
[NiCuNi] nickel
1.341 ZŁ with VAT / pcs + price for transport
1.090 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure which magnet to buy?
Give us a call
+48 22 499 98 98
alternatively send us a note by means of
request form
the contact page.
Strength and structure of magnets can be reviewed with our
magnetic calculator.
Order by 14:00 and we’ll ship today!
MW 8x8 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They have stable power, and over more than ten years their performance decreases symbolically – ~1% (in testing),
- They are highly resistant to demagnetization caused by external magnetic fields,
- Thanks to the polished finish and silver coating, they have an aesthetic appearance,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- The ability for custom shaping as well as customization to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Key role in new technology industries – they find application in HDDs, electric motors, medical equipment along with high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall durability,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Possible threat from tiny pieces may arise, in case of ingestion, which is significant in the context of child safety. Furthermore, minuscule fragments from these devices may hinder health screening after being swallowed,
- Due to expensive raw materials, their cost is above average,
Maximum holding power of the magnet – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated under optimal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Practical lifting capacity: influencing factors
Practical lifting force is dependent on elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the load capacity is reduced by as much as fivefold. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.
Safety Precautions
It is important to keep neodymium magnets away from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Neodymium magnets jump and clash mutually within a radius of several to around 10 cm from each other.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Never bring neodymium magnets close to a phone and GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are characterized by their fragility, which can cause them to crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Exercise caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
