tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. All magnesy in our store are available for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnet for searching F300 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in difficult weather conditions, including snow and rain more...

magnets with holders

Holders with magnets can be applied to improve production, underwater exploration, or finding space rocks from gold more...

Enjoy delivery of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 8x8 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010106

GTIN: 5906301811053

5

Diameter Ø [±0,1 mm]

8 mm

Height [±0,1 mm]

8 mm

Weight

3.02 g

Magnetization Direction

↑ axial

Load capacity

3.54 kg / 34.72 N

Magnetic Induction

553.67 mT

Coating

[NiCuNi] nickel

1.341 with VAT / pcs + price for transport

1.090 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.090 ZŁ
1.341 ZŁ
price from 600 pcs
1.025 ZŁ
1.260 ZŁ
price from 2300 pcs
0.959 ZŁ
1.180 ZŁ

Need advice?

Call us +48 22 499 98 98 alternatively get in touch using our online form the contact form page.
Lifting power along with shape of a neodymium magnet can be analyzed using our power calculator.

Orders submitted before 14:00 will be dispatched today!

MW 8x8 / N38 - cylindrical magnet

Specification/characteristics MW 8x8 / N38 - cylindrical magnet
properties
values
Cat. no.
010106
GTIN
5906301811053
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
8 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
3.02 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.54 kg / 34.72 N
Magnetic Induction ~ ?
553.67 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 8x8 / N38 are magnets made of neodymium in a cylinder form. They are known for their extremely powerful magnetic properties, which outperform ordinary iron magnets. Thanks to their power, they are frequently used in devices that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet with the designation MW 8x8 / N38 with a magnetic lifting capacity of 3.54 kg weighs only 3.02 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the site for the current information and promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are very practical in many applications, they can also constitute certain risk. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin or other materials, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as gold, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet N50 and N52 is a strong and powerful magnetic product with the shape of a cylinder, that offers strong holding power and versatile application. Very good price, 24h delivery, ruggedness and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • Their magnetic field is durable, and after approximately 10 years, it drops only by ~1% (theoretically),
  • They remain magnetized despite exposure to strong external fields,
  • The use of a decorative silver surface provides a smooth finish,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their usage potential,
  • Key role in modern technologies – they are utilized in HDDs, electric motors, clinical machines along with technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
  • Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
  • Health risk linked to microscopic shards may arise, if ingested accidentally, which is crucial in the health of young users. It should also be noted that tiny components from these products might disrupt scanning once in the system,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum magnetic pulling forcewhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, assessed in ideal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet is influenced by in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, whereas under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a small distance {between} the magnet and the plate reduces the lifting capacity.

Caution with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.

Neodymium magnets are highly susceptible to damage, resulting in shattering.

Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 Maintain neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Warning!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98