tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are available for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in solid and airtight steel casing are ideally suited for use in challenging weather conditions, including during snow and rain see more...

magnets with holders

Magnetic holders can be applied to improve production processes, underwater exploration, or searching for meteorites made of metal more...

Shipping is shipped on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

SMZR 25x200 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140444

GTIN: 5906301813507

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

553.50 with VAT / pcs + price for transport

450.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
450.00 ZŁ
553.50 ZŁ
price from 5 pcs
396.00 ZŁ
487.08 ZŁ

Can't decide what to choose?

Contact us by phone +48 22 499 98 98 otherwise drop us a message by means of our online form through our site.
Parameters and appearance of a neodymium magnet can be estimated with our magnetic calculator.

Same-day shipping for orders placed before 14:00.

SMZR 25x200 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x200 / N52 - magnetic separator with handle
properties
values
Cat. no.
140444
GTIN
5906301813507
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This gripper serves to instantly distinguish steel from non-ferrous metals. It enables material segregation in the yard. It is also useful for extracting small steel elements from crates, ash, or sand.
A neodymium magnet attracts only ferromagnetic metals (carbon steel, cast iron). If the magnet does not attract the element, it is likely a non-ferrous metal or acid-resistant steel.
Neodymium separators are much lighter and stronger than traditional ferrite ones. A lighter tool allows for longer work without wrist pain. The neodymium version is currently the standard in professional scrap yards.
The neodymium magnet is enclosed in a solid metal housing (steel or brass). A solid handle (wooden or plastic) ensures a firm and comfortable grip. Thanks to this construction, the separator is resistant to harsh conditions in the scrap yard.
In this model, collected metal must be pulled off manually (wearing a work glove). If you are looking for automatic release, ask about models with a release system. Sliding is more effective than pulling perpendicularly.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable power, neodymium magnets have these key benefits:

  • Their magnetic field is durable, and after approximately ten years, it drops only by ~1% (according to research),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • Because of the lustrous layer of nickel, the component looks aesthetically refined,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • The ability for precise shaping and adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Significant impact in new technology industries – they are used in data storage devices, electromechanical systems, medical equipment or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in small systems

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time increases its overall strength,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
  • Safety concern related to magnet particles may arise, if ingested accidentally, which is significant in the protection of children. It should also be noted that miniature parts from these devices may disrupt scanning once in the system,
  • Due to expensive raw materials, their cost is relatively high,

Maximum holding power of the magnet – what affects it?

The given holding capacity of the magnet represents the highest holding force, measured under optimal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.

Handle Neodymium Magnets with Caution

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are extremely fragile, resulting in breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 Maintain neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or even a fracture.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Exercise caution!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98