tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy strong magnet? Magnetic holders in airtight, solid enclosure are excellent for use in difficult climate conditions, including snow and rain check...

magnetic holders

Holders with magnets can be applied to improve production, underwater discoveries, or searching for meteorites made of metal see...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 25x200 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140444

GTIN: 5906301813507

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

553.50 with VAT / pcs + price for transport

450.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
450.00 ZŁ
553.50 ZŁ
price from 5 pcs
396.00 ZŁ
487.08 ZŁ

Need help making a decision?

Call us +48 22 499 98 98 alternatively contact us via our online form the contact form page.
Force along with structure of a neodymium magnet can be tested on our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

SMZR 25x200 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x200 / N52 - magnetic separator with handle
properties
values
Cat. no.
140444
GTIN
5906301813507
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

In addition, it's necessary to follow handling rules when working with strong magnets, to prevent device breakage or injuries.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They do not lose their magnetism, even after approximately 10 years – the decrease of power is only ~1% (theoretically),
  • They protect against demagnetization induced by surrounding magnetic influence effectively,
  • By applying a shiny layer of gold, the element gains a clean look,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their application range,
  • Significant impact in cutting-edge sectors – they serve a purpose in computer drives, electromechanical systems, clinical machines and other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and enhances its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Possible threat from tiny pieces may arise, in case of ingestion, which is notable in the family environments. Additionally, miniature parts from these magnets have the potential to hinder health screening once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in a perfect environment, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under parallel forces the holding force is lower. In addition, even a small distance {between} the magnet and the plate reduces the load capacity.

Caution with Neodymium Magnets

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnetic are extremely fragile, they easily break and can become damaged.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

 Keep neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Caution!

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98