UMGW 60x30x15 [M10] GW / N38 - magnetic holder internal thread
magnetic holder internal thread
Catalog no 180419
GTIN: 5906301813781
Diameter Ø [±0,1 mm]
60 mm
Height [±0,1 mm]
30 mm
Height [±0,1 mm]
15 mm
Weight
260 g
Load capacity
112 kg / 1098.34 N
102.96 ZŁ with VAT / pcs + price for transport
83.71 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 22 499 98 98
if you prefer send us a note via
form
the contact page.
Parameters and shape of a magnet can be estimated using our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
UMGW 60x30x15 [M10] GW / N38 - magnetic holder internal thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They do not lose their even during approximately ten years – the decrease of lifting capacity is only ~1% (based on measurements),
- They are very resistant to demagnetization caused by external magnetic fields,
- By applying a reflective layer of nickel, the element gains a clean look,
- They possess significant magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
- Important function in advanced technical fields – they are utilized in HDDs, electromechanical systems, diagnostic apparatus along with technologically developed systems,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of magnetic elements:
- They can break when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall durability,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment, especially when used outside, we recommend using waterproof magnets, such as those made of non-metallic materials,
- Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
- Health risk from tiny pieces may arise, especially if swallowed, which is crucial in the health of young users. It should also be noted that small elements from these devices might hinder health screening once in the system,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Optimal lifting capacity of a neodymium magnet – what affects it?
The given holding capacity of the magnet represents the highest holding force, determined in the best circumstances, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- in a perpendicular direction of force
- at room temperature
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.
Handle Neodymium Magnets Carefully
Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.
Magnets made of neodymium are highly susceptible to damage, resulting in their cracking.
Neodymium magnetic are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
