e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F400 GOLD

Where to buy strong magnet? Magnetic holders in airtight and durable steel enclosure are excellent for use in difficult, demanding climate conditions, including snow and rain see...

magnets with holders

Holders with magnets can be used to enhance production, underwater exploration, or locating meteors from gold check...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGW 60x30x15 [M10] GW / N38 - magnetic holder internal thread

magnetic holder internal thread

Catalog no 180419

GTIN: 5906301813781

5

Diameter Ø [±0,1 mm]

60 mm

Height [±0,1 mm]

30 mm

Height [±0,1 mm]

15 mm

Weight

260 g

Load capacity

112 kg / 1098.34 N

102.96 with VAT / pcs + price for transport

83.71 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
83.71 ZŁ
102.96 ZŁ
price from 10 pcs
78.69 ZŁ
96.79 ZŁ
price from 20 pcs
73.66 ZŁ
90.61 ZŁ

Can't decide what to choose?

Call us now +48 888 99 98 98 otherwise contact us through inquiry form through our site.
Parameters along with shape of magnetic components can be verified on our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

UMGW 60x30x15 [M10] GW / N38 - magnetic holder internal thread

Specification/characteristics UMGW 60x30x15 [M10] GW / N38 - magnetic holder internal thread
properties
values
Cat. no.
180419
GTIN
5906301813781
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
60 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
260 g [±0,1 mm]
Load capacity ~ ?
112 kg / 1098.34 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnetic mounts with female thread are versatile tools, applied in manufacturing and everyday applications, e.g. in storage facilities. They contain a magnetic core, typically NdFeB, embedded in a steel housing, coated with zinc for corrosion protection. The female thread, ranging from M3 to M10, enables insertion of bolts, which simplifies assembly of different items, like nameplates, instruments, or lights. They operate thanks to a powerful magnetic zone, which concentrates at the mounting point, providing holding force from 1.3 kg to 60 kg, depending on mount size. These are particularly helpful in the automotive industry, for example, for securing car body components, and also in marketing, for hanging banners. Some models come with a rubber shell, e.g. in black or yellow, which protects surfaces from scratches and increases resistance to dampness. Benefits include great strength, simple mounting due to the internal threading, and the ability to transport heavy ferromagnetic objects. However, the grip strength depends on surface thickness, material used, or distance between the holder and the component. It’s important to avoid impacts, as NdFeB magnets are brittle, and overtightening the screw may be dangerous. Moreover, a strong magnetic field may affect electronic devices, such as smartphones or magnetic cards, therefore mounts should be stored away from those devices. It is recommended to choose holders from reputable manufacturers, to guarantee reliability and safety during use.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • They remain magnetized despite exposure to strong external fields,
  • The use of a polished nickel surface provides a eye-catching finish,
  • Magnetic induction on the surface of these magnets is notably high,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
  • Important function in advanced technical fields – they serve a purpose in HDDs, rotating machines, diagnostic apparatus or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in small systems

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall durability,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
  • Health risk from tiny pieces may arise, when consumed by mistake, which is important in the health of young users. It should also be noted that small elements from these products have the potential to disrupt scanning once in the system,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, determined in the best circumstances, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Key elements affecting lifting force

The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet and the plate reduces the holding force.

Caution with Neodymium Magnets

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or a fracture.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnetic are noted for being fragile, which can cause them to crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Exercise caution!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98