UMGW 60x30x15 [M10] GW / N38 - magnetic holder internal thread
magnetic holder internal thread
Catalog no 180419
GTIN: 5906301813781
Diameter Ø [±0,1 mm]
60 mm
Height [±0,1 mm]
30 mm
Height [±0,1 mm]
15 mm
Weight
260 g
Load capacity
112 kg / 1098.34 N
102.96 ZŁ with VAT / pcs + price for transport
83.71 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us now
+48 888 99 98 98
otherwise let us know through
inquiry form
the contact page.
Force as well as appearance of neodymium magnets can be analyzed on our
magnetic calculator.
Same-day processing for orders placed before 14:00.
UMGW 60x30x15 [M10] GW / N38 - magnetic holder internal thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior magnetism, neodymium magnets have these key benefits:
- Their power is durable, and after approximately 10 years, it drops only by ~1% (theoretically),
- They are very resistant to demagnetization caused by external magnetic sources,
- By applying a shiny layer of nickel, the element gains a clean look,
- They possess strong magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping as well as customization to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
- Key role in new technology industries – they are utilized in data storage devices, electromechanical systems, clinical machines along with other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them useful in compact constructions
Disadvantages of NdFeB magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall durability,
- They lose strength at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of rubber,
- Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
- Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is crucial in the context of child safety. Additionally, small elements from these products can disrupt scanning if inside the body,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Magnetic strength at its maximum – what affects it?
The given holding capacity of the magnet represents the highest holding force, determined in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- under perpendicular detachment force
- at room temperature
Key elements affecting lifting force
The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under perpendicular forces, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet and the plate lowers the load capacity.
Handle Neodymium Magnets with Caution
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets made of neodymium are characterized by their fragility, which can cause them to crumble.
Magnets made of neodymium are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will crack or crumble with uncontrolled joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
It is essential to maintain neodymium magnets away from youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Pay attention!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.
