MPL 25x25x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020137
GTIN: 5906301811435
length [±0,1 mm]
25 mm
Width [±0,1 mm]
25 mm
Height [±0,1 mm]
10 mm
Weight
46.88 g
Magnetization Direction
↑ axial
Load capacity
19.74 kg / 193.58 N
Magnetic Induction
361.04 mT
Coating
[NiCuNi] nickel
18.22 ZŁ with VAT / pcs + price for transport
14.81 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us now
+48 888 99 98 98
or contact us via
our online form
the contact section.
Strength as well as shape of a neodymium magnet can be calculated with our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
MPL 25x25x10 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Thanks to their high strength, flat magnets are frequently applied in products that need exceptional adhesion.
The standard temperature resistance of these magnets is 80°C, but depending on the dimensions, this value grows.
Moreover, flat magnets often have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their durability.
The magnet with the designation MPL 25x25x10 / N38 and a lifting capacity of 19.74 kg with a weight of a mere 46.88 grams, making it the perfect choice for projects needing a flat magnet.
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often used in many devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: This form's flat shape makes mounting, especially when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility creators a lot of flexibility in placing them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, minimizing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet depends on the given use and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Similar poles, e.g. two north poles, act repelling on each other.
Due to these properties, magnets are often used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its size and the material it is made of.
It’s worth noting that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- Their power is durable, and after approximately ten years, it drops only by ~1% (according to research),
- They are very resistant to demagnetization caused by external magnetic sources,
- Thanks to the polished finish and gold coating, they have an elegant appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
- Significant impact in advanced technical fields – they are used in HDDs, electric motors, medical equipment and high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall resistance,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can corrode. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Health risk related to magnet particles may arise, if ingested accidentally, which is important in the health of young users. Furthermore, small elements from these products have the potential to complicate medical imaging when ingested,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given holding capacity of the magnet means the highest holding force, assessed in the best circumstances, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with no separation
- with vertical force applied
- at room temperature
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate reduces the holding force.
Precautions
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Magnets made of neodymium are extremely fragile, resulting in their cracking.
Neodymium magnets are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Pay attention!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
