MPL 25x25x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020137
GTIN/EAN: 5906301811435
length
25 mm [±0,1 mm]
Width
25 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
46.88 g
Magnetization Direction
↑ axial
Load capacity
19.39 kg / 190.25 N
Magnetic Induction
361.04 mT / 3610 Gs
Coating
[NiCuNi] Nickel
20.29 ZŁ with VAT / pcs + price for transport
16.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
if you prefer let us know through
form
our website.
Parameters as well as structure of a magnet can be reviewed using our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
Technical - MPL 25x25x10 / N38 - lamellar magnet
Specification / characteristics - MPL 25x25x10 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020137 |
| GTIN/EAN | 5906301811435 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 25 mm [±0,1 mm] |
| Width | 25 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 46.88 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 19.39 kg / 190.25 N |
| Magnetic Induction ~ ? | 361.04 mT / 3610 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the product - data
These data constitute the result of a physical simulation. Results rely on models for the class Nd2Fe14B. Operational performance may differ from theoretical values. Treat these data as a supplementary guide when designing systems.
Table 1: Static pull force (pull vs gap) - power drop
MPL 25x25x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3610 Gs
361.0 mT
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
crushing |
| 1 mm |
3392 Gs
339.2 mT
|
17.12 kg / 37.74 lbs
17117.7 g / 167.9 N
|
crushing |
| 2 mm |
3156 Gs
315.6 mT
|
14.82 kg / 32.68 lbs
14822.5 g / 145.4 N
|
crushing |
| 3 mm |
2913 Gs
291.3 mT
|
12.63 kg / 27.85 lbs
12631.8 g / 123.9 N
|
crushing |
| 5 mm |
2436 Gs
243.6 mT
|
8.83 kg / 19.46 lbs
8827.9 g / 86.6 N
|
medium risk |
| 10 mm |
1464 Gs
146.4 mT
|
3.19 kg / 7.04 lbs
3191.5 g / 31.3 N
|
medium risk |
| 15 mm |
872 Gs
87.2 mT
|
1.13 kg / 2.49 lbs
1131.5 g / 11.1 N
|
safe |
| 20 mm |
538 Gs
53.8 mT
|
0.43 kg / 0.95 lbs
430.4 g / 4.2 N
|
safe |
| 30 mm |
234 Gs
23.4 mT
|
0.08 kg / 0.18 lbs
81.8 g / 0.8 N
|
safe |
| 50 mm |
68 Gs
6.8 mT
|
0.01 kg / 0.02 lbs
6.9 g / 0.1 N
|
safe |
Table 2: Sliding force (vertical surface)
MPL 25x25x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.88 kg / 8.55 lbs
3878.0 g / 38.0 N
|
| 1 mm | Stal (~0.2) |
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| 2 mm | Stal (~0.2) |
2.96 kg / 6.53 lbs
2964.0 g / 29.1 N
|
| 3 mm | Stal (~0.2) |
2.53 kg / 5.57 lbs
2526.0 g / 24.8 N
|
| 5 mm | Stal (~0.2) |
1.77 kg / 3.89 lbs
1766.0 g / 17.3 N
|
| 10 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| 15 mm | Stal (~0.2) |
0.23 kg / 0.50 lbs
226.0 g / 2.2 N
|
| 20 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MPL 25x25x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
5.82 kg / 12.82 lbs
5817.0 g / 57.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.88 kg / 8.55 lbs
3878.0 g / 38.0 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.94 kg / 4.27 lbs
1939.0 g / 19.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
9.70 kg / 21.37 lbs
9695.0 g / 95.1 N
|
Table 4: Material efficiency (saturation) - power losses
MPL 25x25x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 2.14 lbs
969.5 g / 9.5 N
|
| 1 mm |
|
2.42 kg / 5.34 lbs
2423.8 g / 23.8 N
|
| 2 mm |
|
4.85 kg / 10.69 lbs
4847.5 g / 47.6 N
|
| 3 mm |
|
7.27 kg / 16.03 lbs
7271.3 g / 71.3 N
|
| 5 mm |
|
12.12 kg / 26.72 lbs
12118.8 g / 118.9 N
|
| 10 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
| 11 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
| 12 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
Table 5: Thermal stability (material behavior) - thermal limit
MPL 25x25x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
OK |
| 40 °C | -2.2% |
18.96 kg / 41.81 lbs
18963.4 g / 186.0 N
|
OK |
| 60 °C | -4.4% |
18.54 kg / 40.87 lbs
18536.8 g / 181.8 N
|
|
| 80 °C | -6.6% |
18.11 kg / 39.93 lbs
18110.3 g / 177.7 N
|
|
| 100 °C | -28.8% |
13.81 kg / 30.44 lbs
13805.7 g / 135.4 N
|
Table 6: Two magnets (repulsion) - field collision
MPL 25x25x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
50.20 kg / 110.68 lbs
5 073 Gs
|
7.53 kg / 16.60 lbs
7531 g / 73.9 N
|
N/A |
| 1 mm |
47.31 kg / 104.30 lbs
7 008 Gs
|
7.10 kg / 15.65 lbs
7097 g / 69.6 N
|
42.58 kg / 93.87 lbs
~0 Gs
|
| 2 mm |
44.32 kg / 97.71 lbs
6 783 Gs
|
6.65 kg / 14.66 lbs
6648 g / 65.2 N
|
39.89 kg / 87.94 lbs
~0 Gs
|
| 3 mm |
41.33 kg / 91.12 lbs
6 550 Gs
|
6.20 kg / 13.67 lbs
6200 g / 60.8 N
|
37.20 kg / 82.01 lbs
~0 Gs
|
| 5 mm |
35.49 kg / 78.25 lbs
6 070 Gs
|
5.32 kg / 11.74 lbs
5324 g / 52.2 N
|
31.94 kg / 70.43 lbs
~0 Gs
|
| 10 mm |
22.86 kg / 50.39 lbs
4 871 Gs
|
3.43 kg / 7.56 lbs
3429 g / 33.6 N
|
20.57 kg / 45.35 lbs
~0 Gs
|
| 20 mm |
8.26 kg / 18.22 lbs
2 929 Gs
|
1.24 kg / 2.73 lbs
1240 g / 12.2 N
|
7.44 kg / 16.40 lbs
~0 Gs
|
| 50 mm |
0.46 kg / 1.02 lbs
695 Gs
|
0.07 kg / 0.15 lbs
70 g / 0.7 N
|
0.42 kg / 0.92 lbs
~0 Gs
|
| 60 mm |
0.21 kg / 0.47 lbs
469 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 70 mm |
0.10 kg / 0.23 lbs
329 Gs
|
0.02 kg / 0.03 lbs
16 g / 0.2 N
|
0.09 kg / 0.21 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.12 lbs
239 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.07 lbs
178 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.04 lbs
136 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MPL 25x25x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 13.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 10.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 8.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 6.5 cm |
| Remote | 50 Gs (5.0 mT) | 6.0 cm |
| Payment card | 400 Gs (40.0 mT) | 2.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.0 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MPL 25x25x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.52 km/h
(6.26 m/s)
|
0.92 J | |
| 30 mm |
35.62 km/h
(9.89 m/s)
|
2.29 J | |
| 50 mm |
45.87 km/h
(12.74 m/s)
|
3.81 J | |
| 100 mm |
64.86 km/h
(18.02 m/s)
|
7.61 J |
Table 9: Corrosion resistance
MPL 25x25x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 25x25x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 23 497 Mx | 235.0 µWb |
| Pc Coefficient | 0.46 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 25x25x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 19.39 kg | Standard |
| Water (riverbed) |
22.20 kg
(+2.81 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical wall, the magnet retains merely ~20% of its perpendicular strength.
2. Steel thickness impact
*Thin metal sheet (e.g. 0.5mm PC case) drastically limits the holding force.
3. Power loss vs temp
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.46
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more proposals
Strengths as well as weaknesses of neodymium magnets.
Pros
- They have constant strength, and over nearly 10 years their performance decreases symbolically – ~1% (according to theory),
- They show high resistance to demagnetization induced by external disturbances,
- Thanks to the shiny finish, the plating of Ni-Cu-Ni, gold-plated, or silver gives an clean appearance,
- The surface of neodymium magnets generates a intense magnetic field – this is a distinguishing feature,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- In view of the option of free forming and customization to individualized solutions, magnetic components can be created in a broad palette of forms and dimensions, which makes them more universal,
- Significant place in high-tech industry – they are utilized in hard drives, drive modules, precision medical tools, and modern systems.
- Thanks to efficiency per cm³, small magnets offer high operating force, occupying minimum space,
Limitations
- They are fragile upon too strong impacts. To avoid cracks, it is worth protecting magnets in special housings. Such protection not only shields the magnet but also improves its resistance to damage
- Neodymium magnets decrease their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as those in rubber or plastics, which secure oxidation and corrosion.
- Limited possibility of creating nuts in the magnet and complicated shapes - recommended is casing - magnetic holder.
- Possible danger to health – tiny shards of magnets pose a threat, in case of ingestion, which gains importance in the context of child safety. Additionally, tiny parts of these magnets are able to disrupt the diagnostic process medical in case of swallowing.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Maximum magnetic pulling force – what affects it?
- using a sheet made of mild steel, acting as a circuit closing element
- with a cross-section minimum 10 mm
- characterized by lack of roughness
- with direct contact (no impurities)
- for force applied at a right angle (in the magnet axis)
- at temperature room level
Impact of factors on magnetic holding capacity in practice
- Distance (betwixt the magnet and the metal), because even a microscopic clearance (e.g. 0.5 mm) can cause a drastic drop in lifting capacity by up to 50% (this also applies to paint, corrosion or debris).
- Force direction – catalog parameter refers to pulling vertically. When applying parallel force, the magnet holds significantly lower power (often approx. 20-30% of nominal force).
- Base massiveness – too thin sheet does not accept the full field, causing part of the power to be lost into the air.
- Steel type – mild steel gives the best results. Alloy steels lower magnetic permeability and lifting capacity.
- Smoothness – ideal contact is possible only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
- Thermal factor – hot environment weakens magnetic field. Too high temperature can permanently demagnetize the magnet.
Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a small distance between the magnet and the plate reduces the holding force.
H&S for magnets
Medical implants
Individuals with a heart stimulator have to maintain an safe separation from magnets. The magnetic field can interfere with the operation of the implant.
Dust explosion hazard
Fire warning: Neodymium dust is highly flammable. Avoid machining magnets without safety gear as this may cause fire.
Protective goggles
NdFeB magnets are sintered ceramics, which means they are prone to chipping. Collision of two magnets will cause them breaking into shards.
Crushing risk
Big blocks can smash fingers in a fraction of a second. Under no circumstances put your hand betwixt two attracting surfaces.
Choking Hazard
Only for adults. Tiny parts pose a choking risk, leading to intestinal necrosis. Keep out of reach of children and animals.
Safe distance
Very strong magnetic fields can corrupt files on credit cards, HDDs, and other magnetic media. Stay away of min. 10 cm.
Threat to navigation
Remember: rare earth magnets generate a field that confuses sensitive sensors. Keep a separation from your mobile, tablet, and navigation systems.
Permanent damage
Do not overheat. Neodymium magnets are susceptible to heat. If you need operation above 80°C, inquire about HT versions (H, SH, UH).
Immense force
Before use, read the rules. Sudden snapping can break the magnet or hurt your hand. Think ahead.
Skin irritation risks
It is widely known that nickel (standard magnet coating) is a potent allergen. For allergy sufferers, avoid touching magnets with bare hands and choose versions in plastic housing.
