MW 8x5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010105
GTIN/EAN: 5906301811046
Diameter Ø
8 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
1.88 g
Magnetization Direction
↑ axial
Load capacity
2.17 kg / 21.31 N
Magnetic Induction
483.41 mT / 4834 Gs
Coating
[NiCuNi] Nickel
0.836 ZŁ with VAT / pcs + price for transport
0.680 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
or contact us through
contact form
our website.
Strength along with appearance of a magnet can be tested on our
force calculator.
Same-day processing for orders placed before 14:00.
Physical properties - MW 8x5 / N38 - cylindrical magnet
Specification / characteristics - MW 8x5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010105 |
| GTIN/EAN | 5906301811046 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 8 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 1.88 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.17 kg / 21.31 N |
| Magnetic Induction ~ ? | 483.41 mT / 4834 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the magnet - data
Presented information represent the direct effect of a engineering calculation. Values rely on models for the class Nd2Fe14B. Actual conditions may differ. Treat these data as a preliminary roadmap for designers.
Table 1: Static pull force (force vs gap) - characteristics
MW 8x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4830 Gs
483.0 mT
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
warning |
| 1 mm |
3655 Gs
365.5 mT
|
1.24 kg / 2.74 lbs
1242.8 g / 12.2 N
|
safe |
| 2 mm |
2610 Gs
261.0 mT
|
0.63 kg / 1.40 lbs
633.9 g / 6.2 N
|
safe |
| 3 mm |
1825 Gs
182.5 mT
|
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
safe |
| 5 mm |
915 Gs
91.5 mT
|
0.08 kg / 0.17 lbs
77.9 g / 0.8 N
|
safe |
| 10 mm |
234 Gs
23.4 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
|
safe |
| 15 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
safe |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
safe |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Slippage capacity (vertical surface)
MW 8x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 2 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MW 8x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.65 kg / 1.44 lbs
651.0 g / 6.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.48 lbs
217.0 g / 2.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.09 kg / 2.39 lbs
1085.0 g / 10.6 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 8x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.48 lbs
217.0 g / 2.1 N
|
| 1 mm |
|
0.54 kg / 1.20 lbs
542.5 g / 5.3 N
|
| 2 mm |
|
1.09 kg / 2.39 lbs
1085.0 g / 10.6 N
|
| 3 mm |
|
1.63 kg / 3.59 lbs
1627.5 g / 16.0 N
|
| 5 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 10 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 11 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 12 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
Table 5: Thermal stability (material behavior) - resistance threshold
MW 8x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
OK |
| 40 °C | -2.2% |
2.12 kg / 4.68 lbs
2122.3 g / 20.8 N
|
OK |
| 60 °C | -4.4% |
2.07 kg / 4.57 lbs
2074.5 g / 20.4 N
|
OK |
| 80 °C | -6.6% |
2.03 kg / 4.47 lbs
2026.8 g / 19.9 N
|
|
| 100 °C | -28.8% |
1.55 kg / 3.41 lbs
1545.0 g / 15.2 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MW 8x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
7.23 kg / 15.94 lbs
5 742 Gs
|
1.08 kg / 2.39 lbs
1084 g / 10.6 N
|
N/A |
| 1 mm |
5.58 kg / 12.31 lbs
8 490 Gs
|
0.84 kg / 1.85 lbs
838 g / 8.2 N
|
5.03 kg / 11.08 lbs
~0 Gs
|
| 2 mm |
4.14 kg / 9.13 lbs
7 310 Gs
|
0.62 kg / 1.37 lbs
621 g / 6.1 N
|
3.73 kg / 8.21 lbs
~0 Gs
|
| 3 mm |
2.98 kg / 6.58 lbs
6 207 Gs
|
0.45 kg / 0.99 lbs
448 g / 4.4 N
|
2.69 kg / 5.92 lbs
~0 Gs
|
| 5 mm |
1.48 kg / 3.26 lbs
4 369 Gs
|
0.22 kg / 0.49 lbs
222 g / 2.2 N
|
1.33 kg / 2.93 lbs
~0 Gs
|
| 10 mm |
0.26 kg / 0.57 lbs
1 830 Gs
|
0.04 kg / 0.09 lbs
39 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 lbs
468 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MW 8x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MW 8x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
34.31 km/h
(9.53 m/s)
|
0.09 J | |
| 30 mm |
59.35 km/h
(16.49 m/s)
|
0.26 J | |
| 50 mm |
76.62 km/h
(21.28 m/s)
|
0.43 J | |
| 100 mm |
108.35 km/h
(30.10 m/s)
|
0.85 J |
Table 9: Anti-corrosion coating durability
MW 8x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 8x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 450 Mx | 24.5 µWb |
| Pc Coefficient | 0.68 | High (Stable) |
Table 11: Submerged application
MW 8x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.17 kg | Standard |
| Water (riverbed) |
2.48 kg
(+0.31 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Note: On a vertical wall, the magnet holds just a fraction of its nominal pull.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) drastically weakens the holding force.
3. Thermal stability
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.68
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Strengths as well as weaknesses of neodymium magnets.
Benefits
- They do not lose strength, even during nearly ten years – the drop in strength is only ~1% (theoretically),
- They possess excellent resistance to magnetic field loss due to external magnetic sources,
- Thanks to the shimmering finish, the layer of nickel, gold-plated, or silver-plated gives an aesthetic appearance,
- Magnetic induction on the working part of the magnet turns out to be exceptional,
- Thanks to resistance to high temperature, they can operate (depending on the form) even at temperatures up to 230°C and higher...
- Thanks to modularity in constructing and the capacity to customize to client solutions,
- Versatile presence in future technologies – they serve a role in mass storage devices, drive modules, medical equipment, also complex engineering applications.
- Thanks to efficiency per cm³, small magnets offer high operating force, with minimal size,
Cons
- At strong impacts they can break, therefore we recommend placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- We warn that neodymium magnets can lose their power at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material immune to moisture, in case of application outdoors
- We recommend a housing - magnetic holder, due to difficulties in creating threads inside the magnet and complex shapes.
- Potential hazard to health – tiny shards of magnets can be dangerous, if swallowed, which gains importance in the aspect of protecting the youngest. Furthermore, small elements of these magnets can disrupt the diagnostic process medical after entering the body.
- Due to complex production process, their price is higher than average,
Lifting parameters
Detachment force of the magnet in optimal conditions – what contributes to it?
- using a base made of low-carbon steel, acting as a circuit closing element
- with a thickness no less than 10 mm
- with a plane perfectly flat
- without the slightest insulating layer between the magnet and steel
- during detachment in a direction perpendicular to the mounting surface
- in neutral thermal conditions
Magnet lifting force in use – key factors
- Clearance – the presence of any layer (rust, tape, air) interrupts the magnetic circuit, which reduces capacity steeply (even by 50% at 0.5 mm).
- Force direction – remember that the magnet holds strongest perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the nominal value.
- Metal thickness – the thinner the sheet, the weaker the hold. Magnetic flux penetrates through instead of generating force.
- Material composition – different alloys reacts the same. Alloy additives weaken the attraction effect.
- Smoothness – full contact is obtained only on polished steel. Any scratches and bumps reduce the real contact area, reducing force.
- Heat – neodymium magnets have a sensitivity to temperature. When it is hot they are weaker, and in frost they can be stronger (up to a certain limit).
Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. Moreover, even a small distance between the magnet and the plate lowers the holding force.
H&S for magnets
Permanent damage
Monitor thermal conditions. Heating the magnet above 80 degrees Celsius will permanently weaken its magnetic structure and strength.
Threat to navigation
Be aware: rare earth magnets generate a field that confuses precision electronics. Maintain a separation from your mobile, device, and navigation systems.
Machining danger
Powder generated during cutting of magnets is flammable. Do not drill into magnets unless you are an expert.
Conscious usage
Handle with care. Neodymium magnets act from a long distance and connect with massive power, often faster than you can move away.
Serious injuries
Big blocks can smash fingers in a fraction of a second. Under no circumstances put your hand betwixt two strong magnets.
Pacemakers
People with a ICD must maintain an safe separation from magnets. The magnetic field can stop the functioning of the implant.
Product not for children
Neodymium magnets are not suitable for play. Swallowing multiple magnets may result in them connecting inside the digestive tract, which constitutes a direct threat to life and requires immediate surgery.
Nickel coating and allergies
Nickel alert: The nickel-copper-nickel coating consists of nickel. If an allergic reaction occurs, immediately stop handling magnets and use protective gear.
Electronic devices
Intense magnetic fields can corrupt files on payment cards, HDDs, and other magnetic media. Keep a distance of at least 10 cm.
Shattering risk
Neodymium magnets are ceramic materials, meaning they are prone to chipping. Collision of two magnets leads to them breaking into small pieces.
