MW 8x5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010105
GTIN/EAN: 5906301811046
Diameter Ø
8 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
1.88 g
Magnetization Direction
↑ axial
Load capacity
2.17 kg / 21.31 N
Magnetic Induction
483.41 mT / 4834 Gs
Coating
[NiCuNi] Nickel
0.836 ZŁ with VAT / pcs + price for transport
0.680 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
or contact us via
contact form
through our site.
Specifications and form of a neodymium magnet can be tested using our
force calculator.
Same-day processing for orders placed before 14:00.
Technical - MW 8x5 / N38 - cylindrical magnet
Specification / characteristics - MW 8x5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010105 |
| GTIN/EAN | 5906301811046 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 8 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 1.88 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.17 kg / 21.31 N |
| Magnetic Induction ~ ? | 483.41 mT / 4834 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the product - technical parameters
Presented information constitute the result of a mathematical analysis. Results are based on models for the material Nd2Fe14B. Real-world conditions may differ from theoretical values. Treat these calculations as a reference point during assembly planning.
Table 1: Static pull force (pull vs distance) - power drop
MW 8x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4830 Gs
483.0 mT
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
strong |
| 1 mm |
3655 Gs
365.5 mT
|
1.24 kg / 2.74 lbs
1242.8 g / 12.2 N
|
low risk |
| 2 mm |
2610 Gs
261.0 mT
|
0.63 kg / 1.40 lbs
633.9 g / 6.2 N
|
low risk |
| 3 mm |
1825 Gs
182.5 mT
|
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
low risk |
| 5 mm |
915 Gs
91.5 mT
|
0.08 kg / 0.17 lbs
77.9 g / 0.8 N
|
low risk |
| 10 mm |
234 Gs
23.4 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
|
low risk |
| 15 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
low risk |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
low risk |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Sliding force (wall)
MW 8x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 2 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MW 8x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.65 kg / 1.44 lbs
651.0 g / 6.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.48 lbs
217.0 g / 2.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.09 kg / 2.39 lbs
1085.0 g / 10.6 N
|
Table 4: Material efficiency (substrate influence) - power losses
MW 8x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.48 lbs
217.0 g / 2.1 N
|
| 1 mm |
|
0.54 kg / 1.20 lbs
542.5 g / 5.3 N
|
| 2 mm |
|
1.09 kg / 2.39 lbs
1085.0 g / 10.6 N
|
| 3 mm |
|
1.63 kg / 3.59 lbs
1627.5 g / 16.0 N
|
| 5 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 10 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 11 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 12 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
Table 5: Working in heat (material behavior) - thermal limit
MW 8x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
OK |
| 40 °C | -2.2% |
2.12 kg / 4.68 lbs
2122.3 g / 20.8 N
|
OK |
| 60 °C | -4.4% |
2.07 kg / 4.57 lbs
2074.5 g / 20.4 N
|
OK |
| 80 °C | -6.6% |
2.03 kg / 4.47 lbs
2026.8 g / 19.9 N
|
|
| 100 °C | -28.8% |
1.55 kg / 3.41 lbs
1545.0 g / 15.2 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MW 8x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
7.23 kg / 15.94 lbs
5 742 Gs
|
1.08 kg / 2.39 lbs
1084 g / 10.6 N
|
N/A |
| 1 mm |
5.58 kg / 12.31 lbs
8 490 Gs
|
0.84 kg / 1.85 lbs
838 g / 8.2 N
|
5.03 kg / 11.08 lbs
~0 Gs
|
| 2 mm |
4.14 kg / 9.13 lbs
7 310 Gs
|
0.62 kg / 1.37 lbs
621 g / 6.1 N
|
3.73 kg / 8.21 lbs
~0 Gs
|
| 3 mm |
2.98 kg / 6.58 lbs
6 207 Gs
|
0.45 kg / 0.99 lbs
448 g / 4.4 N
|
2.69 kg / 5.92 lbs
~0 Gs
|
| 5 mm |
1.48 kg / 3.26 lbs
4 369 Gs
|
0.22 kg / 0.49 lbs
222 g / 2.2 N
|
1.33 kg / 2.93 lbs
~0 Gs
|
| 10 mm |
0.26 kg / 0.57 lbs
1 830 Gs
|
0.04 kg / 0.09 lbs
39 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 lbs
468 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MW 8x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MW 8x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
34.31 km/h
(9.53 m/s)
|
0.09 J | |
| 30 mm |
59.35 km/h
(16.49 m/s)
|
0.26 J | |
| 50 mm |
76.62 km/h
(21.28 m/s)
|
0.43 J | |
| 100 mm |
108.35 km/h
(30.10 m/s)
|
0.85 J |
Table 9: Surface protection spec
MW 8x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 8x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 450 Mx | 24.5 µWb |
| Pc Coefficient | 0.68 | High (Stable) |
Table 11: Submerged application
MW 8x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.17 kg | Standard |
| Water (riverbed) |
2.48 kg
(+0.31 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Note: On a vertical wall, the magnet holds just ~20% of its max power.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) significantly limits the holding force.
3. Power loss vs temp
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.68
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Strengths and weaknesses of neodymium magnets.
Advantages
- They retain attractive force for around 10 years – the drop is just ~1% (according to analyses),
- They are noted for resistance to demagnetization induced by external field influence,
- The use of an elegant coating of noble metals (nickel, gold, silver) causes the element to present itself better,
- They are known for high magnetic induction at the operating surface, which improves attraction properties,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Possibility of exact machining and optimizing to specific applications,
- Significant place in future technologies – they are commonly used in magnetic memories, electric drive systems, diagnostic systems, as well as industrial machines.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in compact dimensions, which enables their usage in small systems
Disadvantages
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth protecting magnets in a protective case. Such protection not only protects the magnet but also increases its resistance to damage
- NdFeB magnets lose force when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of power (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- Magnets exposed to a humid environment can corrode. Therefore during using outdoors, we advise using waterproof magnets made of rubber, plastic or other material resistant to moisture
- Limited ability of creating nuts in the magnet and complicated shapes - preferred is a housing - magnet mounting.
- Health risk resulting from small fragments of magnets pose a threat, in case of ingestion, which gains importance in the aspect of protecting the youngest. Additionally, small elements of these magnets can be problematic in diagnostics medical in case of swallowing.
- With large orders the cost of neodymium magnets can be a barrier,
Pull force analysis
Maximum lifting capacity of the magnet – what affects it?
- using a plate made of high-permeability steel, functioning as a ideal flux conductor
- with a thickness no less than 10 mm
- with an ground contact surface
- without any insulating layer between the magnet and steel
- during detachment in a direction vertical to the mounting surface
- in temp. approx. 20°C
What influences lifting capacity in practice
- Distance (betwixt the magnet and the plate), because even a microscopic clearance (e.g. 0.5 mm) results in a drastic drop in lifting capacity by up to 50% (this also applies to paint, rust or debris).
- Force direction – note that the magnet holds strongest perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the nominal value.
- Wall thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of converting into lifting capacity.
- Material composition – different alloys attracts identically. High carbon content weaken the interaction with the magnet.
- Base smoothness – the smoother and more polished the surface, the larger the contact zone and stronger the hold. Unevenness acts like micro-gaps.
- Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they lose power, and at low temperatures they can be stronger (up to a certain limit).
Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, however under parallel forces the load capacity is reduced by as much as 5 times. Moreover, even a small distance between the magnet’s surface and the plate lowers the load capacity.
H&S for magnets
Phone sensors
An intense magnetic field disrupts the operation of magnetometers in smartphones and GPS navigation. Keep magnets near a smartphone to avoid breaking the sensors.
Dust is flammable
Dust generated during machining of magnets is self-igniting. Do not drill into magnets without proper cooling and knowledge.
Product not for children
These products are not intended for children. Swallowing multiple magnets may result in them pinching intestinal walls, which constitutes a critical condition and necessitates urgent medical intervention.
Bodily injuries
Pinching hazard: The pulling power is so great that it can result in hematomas, crushing, and broken bones. Use thick gloves.
Safe distance
Data protection: Neodymium magnets can ruin payment cards and sensitive devices (heart implants, medical aids, timepieces).
Skin irritation risks
Some people experience a contact allergy to nickel, which is the common plating for neodymium magnets. Frequent touching can result in an allergic reaction. We recommend wear safety gloves.
Life threat
Medical warning: Neodymium magnets can turn off pacemakers and defibrillators. Stay away if you have electronic implants.
Immense force
Before use, check safety instructions. Uncontrolled attraction can destroy the magnet or injure your hand. Be predictive.
Magnet fragility
Despite the nickel coating, the material is brittle and cannot withstand shocks. Avoid impacts, as the magnet may crumble into hazardous fragments.
Do not overheat magnets
Watch the temperature. Heating the magnet above 80 degrees Celsius will ruin its magnetic structure and pulling force.
