e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnets for fishing F300 GOLD

Where to buy strong magnet? Holders with magnets in solid and airtight enclosure are excellent for use in variable and difficult climate conditions, including in the rain and snow see more...

magnets with holders

Holders with magnets can be applied to improve production, exploring underwater areas, or finding meteors from gold check...

Order is shipped if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 8x1.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010101

GTIN: 5906301811008

5

Diameter Ø [±0,1 mm]

8 mm

Height [±0,1 mm]

1.5 mm

Weight

0.57 g

Magnetization Direction

↑ axial

Load capacity

0.66 kg / 6.47 N

Magnetic Induction

217.52 mT

Coating

[NiCuNi] nickel

0.455 with VAT / pcs + price for transport

0.370 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.370 ZŁ
0.455 ZŁ
price from 1700 pcs
0.348 ZŁ
0.428 ZŁ
price from 6800 pcs
0.326 ZŁ
0.400 ZŁ

Want to negotiate?

Call us now +48 22 499 98 98 or contact us using contact form through our site.
Weight and form of magnets can be tested on our our magnetic calculator.

Order by 14:00 and we’ll ship today!

MW 8x1.5 / N38 - cylindrical magnet

Specification/characteristics MW 8x1.5 / N38 - cylindrical magnet
properties
values
Cat. no.
010101
GTIN
5906301811008
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
8 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.57 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.66 kg / 6.47 N
Magnetic Induction ~ ?
217.52 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These rod-shaped products are made of sintered Neodymium-Iron-Boron (NdFeB). This guarantees powerful holding force while maintaining a small size. Model MW 8x1.5 / N38 has a pull force of approx. 0.66 kg. Their symmetrical shape makes them ideal for installing in sockets, generators and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
It is best to use adhesive to fix the magnet into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Use strong epoxy resins, which do not react with the nickel coating. Never hammer the magnets, as neodymium is a brittle material and is prone to chipping upon impact.
The magnet grade determines the pull force of the material. A higher value means more power for the same size. N38 is the most common choice, which provides an optimal price-to-power ratio. For demanding applications, we recommend grade N52, which is the most powerful option on the market.
We use a protective plating of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects against air humidity. However, they are not fully waterproof. In outdoor or wet conditions, the coating may be damaged, leading to rusting of the magnet. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
Cylindrical magnets are a key component of many modern machines. They are commonly used to build rotors in brushless motors and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
The maximum operating temperature for the standard version is 80°C (176°F). Higher temperatures can cause irreversible demagnetization. For more demanding conditions (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). It is worth knowing that neodymium magnets do not tolerate thermal shock well.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They have stable power, and over around 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They are extremely resistant to demagnetization caused by external magnetic sources,
  • In other words, due to the metallic gold coating, the magnet obtains an aesthetic appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their application range,
  • Important function in cutting-edge sectors – they are utilized in data storage devices, rotating machines, medical equipment or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them useful in miniature devices

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall strength,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Potential hazard due to small fragments may arise, when consumed by mistake, which is notable in the health of young users. It should also be noted that minuscule fragments from these devices may hinder health screening after being swallowed,
  • Due to expensive raw materials, their cost is relatively high,

Best holding force of the magnet in ideal parameterswhat it depends on?

The given pulling force of the magnet means the maximum force, assessed in a perfect environment, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Magnet lifting force in use – key factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are delicate and can easily break and shatter.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Pay attention!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98