Powerful neodymium magnets: discs and cylinders

Need strong magnetic field? We have in stock rich assortment of various shapes and sizes. Best choice for home use, garage and model making. Check our offer in stock.

check full offer

Equipment for treasure hunters

Start your adventure involving underwater treasure hunting! Our double-handle grips (F200, F400) provide grip certainty and huge lifting capacity. Solid, corrosion-resistant housing and strong lines will perform in rivers and lakes.

choose your water magnet

Industrial magnetic grips industrial

Professional solutions for fixing non-invasive. Threaded grips (M8, M10, M12) provide quick improvement of work on warehouses. They are indispensable mounting lighting, detectors and banners.

check available threads

📦 Fast shipping: buy by 14:00, package goes out today!

Dhit sp. z o.o.
Product available Ships tomorrow

MW 8x1.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010101

GTIN/EAN: 5906301811008

5.00

Diameter Ø

8 mm [±0,1 mm]

Height

1.5 mm [±0,1 mm]

Weight

0.57 g

Magnetization Direction

↑ axial

Load capacity

0.74 kg / 7.27 N

Magnetic Induction

217.52 mT / 2175 Gs

Coating

[NiCuNi] Nickel

0.455 with VAT / pcs + price for transport

0.370 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.370 ZŁ
0.455 ZŁ
price from 1700 pcs
0.348 ZŁ
0.428 ZŁ
price from 6800 pcs
0.326 ZŁ
0.400 ZŁ
Looking for a better price?

Contact us by phone +48 888 99 98 98 if you prefer send us a note through contact form our website.
Strength as well as shape of magnetic components can be estimated using our force calculator.

Orders submitted before 14:00 will be dispatched today!

Product card - MW 8x1.5 / N38 - cylindrical magnet

Specification / characteristics - MW 8x1.5 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010101
GTIN/EAN 5906301811008
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 8 mm [±0,1 mm]
Height 1.5 mm [±0,1 mm]
Weight 0.57 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.74 kg / 7.27 N
Magnetic Induction ~ ? 217.52 mT / 2175 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 8x1.5 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the magnet - technical parameters

These values represent the direct effect of a physical calculation. Results were calculated on models for the class Nd2Fe14B. Operational conditions might slightly differ from theoretical values. Please consider these calculations as a supplementary guide during assembly planning.

Table 1: Static force (force vs gap) - interaction chart
MW 8x1.5 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 2174 Gs
217.4 mT
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
safe
1 mm 1782 Gs
178.2 mT
0.50 kg / 1.10 pounds
497.3 g / 4.9 N
safe
2 mm 1310 Gs
131.0 mT
0.27 kg / 0.59 pounds
268.7 g / 2.6 N
safe
3 mm 914 Gs
91.4 mT
0.13 kg / 0.29 pounds
130.8 g / 1.3 N
safe
5 mm 439 Gs
43.9 mT
0.03 kg / 0.07 pounds
30.2 g / 0.3 N
safe
10 mm 99 Gs
9.9 mT
0.00 kg / 0.00 pounds
1.5 g / 0.0 N
safe
15 mm 35 Gs
3.5 mT
0.00 kg / 0.00 pounds
0.2 g / 0.0 N
safe
20 mm 16 Gs
1.6 mT
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
safe
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
safe
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
safe

Table 2: Vertical load (wall)
MW 8x1.5 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.15 kg / 0.33 pounds
148.0 g / 1.5 N
1 mm Stal (~0.2) 0.10 kg / 0.22 pounds
100.0 g / 1.0 N
2 mm Stal (~0.2) 0.05 kg / 0.12 pounds
54.0 g / 0.5 N
3 mm Stal (~0.2) 0.03 kg / 0.06 pounds
26.0 g / 0.3 N
5 mm Stal (~0.2) 0.01 kg / 0.01 pounds
6.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - vertical pull
MW 8x1.5 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.22 kg / 0.49 pounds
222.0 g / 2.2 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.15 kg / 0.33 pounds
148.0 g / 1.5 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.07 kg / 0.16 pounds
74.0 g / 0.7 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.37 kg / 0.82 pounds
370.0 g / 3.6 N

Table 4: Steel thickness (saturation) - power losses
MW 8x1.5 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.07 kg / 0.16 pounds
74.0 g / 0.7 N
1 mm
25%
0.19 kg / 0.41 pounds
185.0 g / 1.8 N
2 mm
50%
0.37 kg / 0.82 pounds
370.0 g / 3.6 N
3 mm
75%
0.55 kg / 1.22 pounds
555.0 g / 5.4 N
5 mm
100%
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
10 mm
100%
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
11 mm
100%
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
12 mm
100%
0.74 kg / 1.63 pounds
740.0 g / 7.3 N

Table 5: Thermal resistance (material behavior) - thermal limit
MW 8x1.5 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.74 kg / 1.63 pounds
740.0 g / 7.3 N
OK
40 °C -2.2% 0.72 kg / 1.60 pounds
723.7 g / 7.1 N
OK
60 °C -4.4% 0.71 kg / 1.56 pounds
707.4 g / 6.9 N
80 °C -6.6% 0.69 kg / 1.52 pounds
691.2 g / 6.8 N
100 °C -28.8% 0.53 kg / 1.16 pounds
526.9 g / 5.2 N

Table 6: Two magnets (repulsion) - field collision
MW 8x1.5 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 1.46 kg / 3.23 pounds
3 712 Gs
0.22 kg / 0.48 pounds
220 g / 2.2 N
N/A
1 mm 1.24 kg / 2.74 pounds
4 007 Gs
0.19 kg / 0.41 pounds
187 g / 1.8 N
1.12 kg / 2.47 pounds
~0 Gs
2 mm 0.98 kg / 2.17 pounds
3 565 Gs
0.15 kg / 0.33 pounds
148 g / 1.4 N
0.89 kg / 1.95 pounds
~0 Gs
3 mm 0.74 kg / 1.63 pounds
3 086 Gs
0.11 kg / 0.24 pounds
111 g / 1.1 N
0.66 kg / 1.46 pounds
~0 Gs
5 mm 0.37 kg / 0.82 pounds
2 196 Gs
0.06 kg / 0.12 pounds
56 g / 0.5 N
0.34 kg / 0.74 pounds
~0 Gs
10 mm 0.06 kg / 0.13 pounds
878 Gs
0.01 kg / 0.02 pounds
9 g / 0.1 N
0.05 kg / 0.12 pounds
~0 Gs
20 mm 0.00 kg / 0.01 pounds
199 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
50 mm 0.00 kg / 0.00 pounds
17 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
60 mm 0.00 kg / 0.00 pounds
10 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
70 mm 0.00 kg / 0.00 pounds
6 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
80 mm 0.00 kg / 0.00 pounds
4 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
90 mm 0.00 kg / 0.00 pounds
3 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
100 mm 0.00 kg / 0.00 pounds
2 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs

Table 7: Hazards (electronics) - warnings
MW 8x1.5 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.0 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Mechanical watch 20 Gs (2.0 mT) 2.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 1.5 cm
Remote 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Dynamics (cracking risk) - collision effects
MW 8x1.5 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 36.39 km/h
(10.11 m/s)
0.03 J
30 mm 62.94 km/h
(17.48 m/s)
0.09 J
50 mm 81.25 km/h
(22.57 m/s)
0.15 J
100 mm 114.91 km/h
(31.92 m/s)
0.29 J

Table 9: Corrosion resistance
MW 8x1.5 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MW 8x1.5 / N38

Parameter Value SI Unit / Description
Magnetic Flux 1 285 Mx 12.9 µWb
Pc Coefficient 0.27 Low (Flat)

Table 11: Physics of underwater searching
MW 8x1.5 / N38

Environment Effective steel pull Effect
Air (land) 0.74 kg Standard
Water (riverbed) 0.85 kg
(+0.11 kg buoyancy gain)
+14.5%
Corrosion warning: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Wall mount (shear)

*Warning: On a vertical wall, the magnet retains merely ~20% of its perpendicular strength.

2. Efficiency vs thickness

*Thin steel (e.g. computer case) drastically limits the holding force.

3. Temperature resistance

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.27

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Environmental data
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010101-2026
Quick Unit Converter
Magnet pull force

Magnetic Field

See also deals

This product is a very strong cylindrical magnet, composed of advanced NdFeB material, which, with dimensions of Ø8x1.5 mm, guarantees maximum efficiency. The MW 8x1.5 / N38 component boasts a tolerance of ±0.1mm and industrial build quality, making it an excellent solution for professional engineers and designers. As a cylindrical magnet with significant force (approx. 0.74 kg), this product is in stock from our European logistics center, ensuring rapid order fulfillment. Additionally, its Ni-Cu-Ni coating secures it against corrosion in typical operating conditions, guaranteeing an aesthetic appearance and durability for years.
It successfully proves itself in DIY projects, advanced robotics, and broadly understood industry, serving as a fastening or actuating element. Thanks to the pull force of 7.27 N with a weight of only 0.57 g, this cylindrical magnet is indispensable in electronics and wherever every gram matters.
Due to the delicate structure of the ceramic sinter, you must not use force-fitting (so-called press-fit), as this risks chipping the coating of this precision component. To ensure stability in automation, specialized industrial adhesives are used, which are safe for nickel and fill the gap, guaranteeing durability of the connection.
Grade N38 is the most popular standard for industrial neodymium magnets, offering a great economic balance and operational stability. If you need the strongest magnets in the same volume (Ø8x1.5), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our store.
This model is characterized by dimensions Ø8x1.5 mm, which, at a weight of 0.57 g, makes it an element with high magnetic energy density. The key parameter here is the lifting capacity amounting to approximately 0.74 kg (force ~7.27 N), which, with such compact dimensions, proves the high power of the NdFeB material. The product has a [NiCuNi] coating, which protects the surface against oxidation, giving it an aesthetic, silvery shine.
Standardly, the magnetic axis runs through the center of the cylinder, causing the greatest attraction force to occur on the bases with a diameter of 8 mm. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized through the diameter if your project requires it.

Advantages and disadvantages of Nd2Fe14B magnets.

Advantages

Apart from their strong holding force, neodymium magnets have these key benefits:
  • They retain magnetic properties for almost ten years – the loss is just ~1% (in theory),
  • They maintain their magnetic properties even under external field action,
  • A magnet with a metallic nickel surface looks better,
  • Magnetic induction on the surface of the magnet remains exceptional,
  • Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
  • In view of the ability of precise molding and customization to custom requirements, neodymium magnets can be modeled in a wide range of geometric configurations, which increases their versatility,
  • Significant place in advanced technology sectors – they are used in mass storage devices, drive modules, advanced medical instruments, as well as modern systems.
  • Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications

Disadvantages

Disadvantages of neodymium magnets:
  • Susceptibility to cracking is one of their disadvantages. Upon strong impact they can fracture. We recommend keeping them in a strong case, which not only protects them against impacts but also increases their durability
  • Neodymium magnets lose their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
  • Magnets exposed to a humid environment can rust. Therefore when using outdoors, we advise using waterproof magnets made of rubber, plastic or other material protecting against moisture
  • We suggest casing - magnetic mechanism, due to difficulties in realizing nuts inside the magnet and complicated forms.
  • Health risk resulting from small fragments of magnets can be dangerous, if swallowed, which becomes key in the aspect of protecting the youngest. Additionally, small components of these products can disrupt the diagnostic process medical after entering the body.
  • With large orders the cost of neodymium magnets can be a barrier,

Lifting parameters

Detachment force of the magnet in optimal conditionswhat affects it?

The declared magnet strength refers to the peak performance, obtained under optimal environment, namely:
  • using a plate made of high-permeability steel, acting as a ideal flux conductor
  • whose thickness equals approx. 10 mm
  • characterized by smoothness
  • without the slightest clearance between the magnet and steel
  • under perpendicular application of breakaway force (90-degree angle)
  • at temperature room level

Key elements affecting lifting force

Real force is influenced by specific conditions, including (from priority):
  • Distance – the presence of any layer (paint, tape, air) interrupts the magnetic circuit, which reduces power steeply (even by 50% at 0.5 mm).
  • Force direction – note that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops drastically, often to levels of 20-30% of the nominal value.
  • Substrate thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal restricts the attraction force (the magnet "punches through" it).
  • Material composition – different alloys attracts identically. High carbon content worsen the attraction effect.
  • Smoothness – full contact is possible only on polished steel. Any scratches and bumps create air cushions, reducing force.
  • Operating temperature – NdFeB sinters have a negative temperature coefficient. When it is hot they lose power, and at low temperatures gain strength (up to a certain limit).

Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance between the magnet’s surface and the plate lowers the holding force.

Safe handling of neodymium magnets
Machining danger

Machining of NdFeB material poses a fire hazard. Neodymium dust oxidizes rapidly with oxygen and is hard to extinguish.

Nickel allergy

Medical facts indicate that the nickel plating (standard magnet coating) is a potent allergen. For allergy sufferers, avoid direct skin contact or choose encased magnets.

Health Danger

Life threat: Strong magnets can deactivate heart devices and defibrillators. Stay away if you have medical devices.

Electronic hazard

Do not bring magnets near a wallet, computer, or screen. The magnetic field can irreversibly ruin these devices and wipe information from cards.

Do not overheat magnets

Regular neodymium magnets (grade N) undergo demagnetization when the temperature surpasses 80°C. The loss of strength is permanent.

No play value

Always store magnets out of reach of children. Choking hazard is significant, and the consequences of magnets clamping inside the body are fatal.

Caution required

Use magnets consciously. Their powerful strength can shock even professionals. Be vigilant and respect their force.

Crushing force

Risk of injury: The pulling power is so great that it can result in blood blisters, crushing, and even bone fractures. Use thick gloves.

Compass and GPS

Note: neodymium magnets produce a field that confuses sensitive sensors. Maintain a safe distance from your phone, device, and navigation systems.

Shattering risk

NdFeB magnets are ceramic materials, which means they are very brittle. Collision of two magnets leads to them shattering into small pieces.

Danger! Need more info? Check our post: Are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98