MW 8x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010101
GTIN/EAN: 5906301811008
Diameter Ø
8 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.57 g
Magnetization Direction
↑ axial
Load capacity
0.74 kg / 7.27 N
Magnetic Induction
217.52 mT / 2175 Gs
Coating
[NiCuNi] Nickel
0.455 ZŁ with VAT / pcs + price for transport
0.370 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
alternatively get in touch through
contact form
the contact page.
Weight and form of neodymium magnets can be analyzed with our
power calculator.
Same-day shipping for orders placed before 14:00.
Technical parameters of the product - MW 8x1.5 / N38 - cylindrical magnet
Specification / characteristics - MW 8x1.5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010101 |
| GTIN/EAN | 5906301811008 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 8 mm [±0,1 mm] |
| Height | 1.5 mm [±0,1 mm] |
| Weight | 0.57 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.74 kg / 7.27 N |
| Magnetic Induction ~ ? | 217.52 mT / 2175 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the assembly - data
Presented values constitute the outcome of a engineering analysis. Values were calculated on algorithms for the material Nd2Fe14B. Operational parameters might slightly differ from theoretical values. Please consider these calculations as a supplementary guide for designers.
Table 1: Static force (pull vs gap) - power drop
MW 8x1.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
2174 Gs
217.4 mT
|
0.74 kg / 740.0 g
7.3 N
|
safe |
| 1 mm |
1782 Gs
178.2 mT
|
0.50 kg / 497.3 g
4.9 N
|
safe |
| 2 mm |
1310 Gs
131.0 mT
|
0.27 kg / 268.7 g
2.6 N
|
safe |
| 3 mm |
914 Gs
91.4 mT
|
0.13 kg / 130.8 g
1.3 N
|
safe |
| 5 mm |
439 Gs
43.9 mT
|
0.03 kg / 30.2 g
0.3 N
|
safe |
| 10 mm |
99 Gs
9.9 mT
|
0.00 kg / 1.5 g
0.0 N
|
safe |
| 15 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.2 g
0.0 N
|
safe |
| 20 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
Table 2: Vertical force (vertical surface)
MW 8x1.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 100.0 g
1.0 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MW 8x1.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 222.0 g
2.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 148.0 g
1.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 74.0 g
0.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.37 kg / 370.0 g
3.6 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MW 8x1.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 74.0 g
0.7 N
|
| 1 mm |
|
0.19 kg / 185.0 g
1.8 N
|
| 2 mm |
|
0.37 kg / 370.0 g
3.6 N
|
| 5 mm |
|
0.74 kg / 740.0 g
7.3 N
|
| 10 mm |
|
0.74 kg / 740.0 g
7.3 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MW 8x1.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.74 kg / 740.0 g
7.3 N
|
OK |
| 40 °C | -2.2% |
0.72 kg / 723.7 g
7.1 N
|
OK |
| 60 °C | -4.4% |
0.71 kg / 707.4 g
6.9 N
|
|
| 80 °C | -6.6% |
0.69 kg / 691.2 g
6.8 N
|
|
| 100 °C | -28.8% |
0.53 kg / 526.9 g
5.2 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 8x1.5 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
1.46 kg / 1465 g
14.4 N
3 712 Gs
|
N/A |
| 1 mm |
1.24 kg / 1244 g
12.2 N
4 007 Gs
|
1.12 kg / 1120 g
11.0 N
~0 Gs
|
| 2 mm |
0.98 kg / 984 g
9.7 N
3 565 Gs
|
0.89 kg / 886 g
8.7 N
~0 Gs
|
| 3 mm |
0.74 kg / 738 g
7.2 N
3 086 Gs
|
0.66 kg / 664 g
6.5 N
~0 Gs
|
| 5 mm |
0.37 kg / 374 g
3.7 N
2 196 Gs
|
0.34 kg / 336 g
3.3 N
~0 Gs
|
| 10 mm |
0.06 kg / 60 g
0.6 N
878 Gs
|
0.05 kg / 54 g
0.5 N
~0 Gs
|
| 20 mm |
0.00 kg / 3 g
0.0 N
199 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
17 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MW 8x1.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Collisions (kinetic energy) - collision effects
MW 8x1.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
36.39 km/h
(10.11 m/s)
|
0.03 J | |
| 30 mm |
62.94 km/h
(17.48 m/s)
|
0.09 J | |
| 50 mm |
81.25 km/h
(22.57 m/s)
|
0.15 J | |
| 100 mm |
114.91 km/h
(31.92 m/s)
|
0.29 J |
Table 9: Surface protection spec
MW 8x1.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 8x1.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 285 Mx | 12.9 µWb |
| Pc Coefficient | 0.27 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 8x1.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.74 kg | Standard |
| Water (riverbed) |
0.85 kg
(+0.11 kg Buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet retains only ~20% of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. computer case) drastically reduces the holding force.
3. Power loss vs temp
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.27
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more proposals
Pros and cons of rare earth magnets.
Benefits
- They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (in laboratory conditions),
- They do not lose their magnetic properties even under external field action,
- By using a lustrous layer of silver, the element presents an modern look,
- They are known for high magnetic induction at the operating surface, making them more effective,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Thanks to modularity in forming and the capacity to adapt to unusual requirements,
- Wide application in modern technologies – they are utilized in mass storage devices, motor assemblies, advanced medical instruments, and other advanced devices.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- They are prone to damage upon too strong impacts. To avoid cracks, it is worth protecting magnets using a steel holder. Such protection not only shields the magnet but also increases its resistance to damage
- We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can corrode. Therefore during using outdoors, we advise using waterproof magnets made of rubber, plastic or other material resistant to moisture
- Due to limitations in realizing threads and complicated shapes in magnets, we recommend using a housing - magnetic holder.
- Possible danger to health – tiny shards of magnets are risky, when accidentally swallowed, which becomes key in the aspect of protecting the youngest. It is also worth noting that tiny parts of these magnets are able to disrupt the diagnostic process medical in case of swallowing.
- High unit price – neodymium magnets cost more than other types of magnets (e.g. ferrite), which can limit application in large quantities
Pull force analysis
Highest magnetic holding force – what affects it?
- with the use of a sheet made of special test steel, guaranteeing maximum field concentration
- with a thickness minimum 10 mm
- with a plane free of scratches
- without any clearance between the magnet and steel
- during pulling in a direction perpendicular to the plane
- in neutral thermal conditions
What influences lifting capacity in practice
- Space between magnet and steel – every millimeter of distance (caused e.g. by veneer or dirt) significantly weakens the pulling force, often by half at just 0.5 mm.
- Force direction – remember that the magnet holds strongest perpendicularly. Under sliding down, the holding force drops drastically, often to levels of 20-30% of the nominal value.
- Element thickness – for full efficiency, the steel must be sufficiently thick. Paper-thin metal limits the lifting capacity (the magnet "punches through" it).
- Material type – the best choice is high-permeability steel. Stainless steels may attract less.
- Plate texture – ground elements guarantee perfect abutment, which improves force. Rough surfaces weaken the grip.
- Thermal conditions – neodymium magnets have a negative temperature coefficient. When it is hot they lose power, and in frost they can be stronger (up to a certain limit).
Lifting capacity was measured using a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, however under shearing force the holding force is lower. In addition, even a minimal clearance between the magnet and the plate decreases the load capacity.
Safe handling of neodymium magnets
Do not give to children
Neodymium magnets are not intended for children. Swallowing a few magnets may result in them connecting inside the digestive tract, which constitutes a critical condition and requires urgent medical intervention.
Flammability
Combustion risk: Neodymium dust is explosive. Do not process magnets without safety gear as this may cause fire.
Magnet fragility
Protect your eyes. Magnets can explode upon uncontrolled impact, launching sharp fragments into the air. Eye protection is mandatory.
Threat to electronics
Powerful magnetic fields can erase data on credit cards, hard drives, and storage devices. Stay away of min. 10 cm.
Immense force
Handle magnets with awareness. Their huge power can surprise even experienced users. Be vigilant and respect their power.
GPS Danger
Note: rare earth magnets generate a field that confuses sensitive sensors. Maintain a safe distance from your phone, device, and GPS.
Sensitization to coating
Warning for allergy sufferers: The Ni-Cu-Ni coating contains nickel. If skin irritation happens, cease handling magnets and use protective gear.
Health Danger
People with a pacemaker should keep an absolute distance from magnets. The magnetism can disrupt the operation of the life-saving device.
Hand protection
Danger of trauma: The pulling power is so immense that it can result in hematomas, crushing, and broken bones. Use thick gloves.
Heat sensitivity
Control the heat. Exposing the magnet to high heat will ruin its magnetic structure and strength.
