MW 8x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010101
GTIN: 5906301811008
Diameter Ø [±0,1 mm]
8 mm
Height [±0,1 mm]
1.5 mm
Weight
0.57 g
Magnetization Direction
↑ axial
Load capacity
0.66 kg / 6.47 N
Magnetic Induction
217.52 mT
Coating
[NiCuNi] nickel
0.455 ZŁ with VAT / pcs + price for transport
0.370 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Give us a call
+48 888 99 98 98
alternatively drop us a message using
request form
the contact section.
Lifting power along with form of a magnet can be tested with our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 8x1.5 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as gold, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable magnetic energy, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly 10 years their performance decreases symbolically – ~1% (according to theory),
- Their ability to resist magnetic interference from external fields is notable,
- In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
- They have exceptional magnetic induction on the surface of the magnet,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- The ability for custom shaping and customization to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Wide application in modern technologies – they find application in hard drives, electric drives, healthcare devices or even other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which allows for use in compact constructions
Disadvantages of neodymium magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall resistance,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment, especially when used outside, we recommend using sealed magnets, such as those made of rubber,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Safety concern from tiny pieces may arise, when consumed by mistake, which is significant in the context of child safety. Moreover, small elements from these devices might hinder health screening when ingested,
- Due to the price of neodymium, their cost is relatively high,
Maximum magnetic pulling force – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, assessed in ideal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
Key elements affecting lifting force
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate lowers the holding force.
Precautions
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
It is important to maintain neodymium magnets away from youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets bounce and clash mutually within a distance of several to almost 10 cm from each other.
Neodymium magnetic are highly fragile, they easily fall apart and can crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Safety precautions!
To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.
