MW 8x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010101
GTIN/EAN: 5906301811008
Diameter Ø
8 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.57 g
Magnetization Direction
↑ axial
Load capacity
0.74 kg / 7.27 N
Magnetic Induction
217.52 mT / 2175 Gs
Coating
[NiCuNi] Nickel
0.455 ZŁ with VAT / pcs + price for transport
0.370 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
if you prefer send us a note through
our online form
the contact form page.
Strength along with appearance of a magnet can be checked using our
power calculator.
Orders submitted before 14:00 will be dispatched today!
Technical - MW 8x1.5 / N38 - cylindrical magnet
Specification / characteristics - MW 8x1.5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010101 |
| GTIN/EAN | 5906301811008 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 8 mm [±0,1 mm] |
| Height | 1.5 mm [±0,1 mm] |
| Weight | 0.57 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.74 kg / 7.27 N |
| Magnetic Induction ~ ? | 217.52 mT / 2175 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the assembly - data
Presented information represent the outcome of a physical calculation. Results rely on models for the material Nd2Fe14B. Real-world performance may differ from theoretical values. Use these calculations as a supplementary guide when designing systems.
Table 1: Static force (pull vs gap) - interaction chart
MW 8x1.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2174 Gs
217.4 mT
|
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
|
weak grip |
| 1 mm |
1782 Gs
178.2 mT
|
0.50 kg / 1.10 pounds
497.3 g / 4.9 N
|
weak grip |
| 2 mm |
1310 Gs
131.0 mT
|
0.27 kg / 0.59 pounds
268.7 g / 2.6 N
|
weak grip |
| 3 mm |
914 Gs
91.4 mT
|
0.13 kg / 0.29 pounds
130.8 g / 1.3 N
|
weak grip |
| 5 mm |
439 Gs
43.9 mT
|
0.03 kg / 0.07 pounds
30.2 g / 0.3 N
|
weak grip |
| 10 mm |
99 Gs
9.9 mT
|
0.00 kg / 0.00 pounds
1.5 g / 0.0 N
|
weak grip |
| 15 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 pounds
0.2 g / 0.0 N
|
weak grip |
| 20 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
Table 2: Shear load (vertical surface)
MW 8x1.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.33 pounds
148.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.22 pounds
100.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.12 pounds
54.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.03 kg / 0.06 pounds
26.0 g / 0.3 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.01 pounds
6.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 8x1.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 0.49 pounds
222.0 g / 2.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.33 pounds
148.0 g / 1.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 0.16 pounds
74.0 g / 0.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.37 kg / 0.82 pounds
370.0 g / 3.6 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MW 8x1.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 0.16 pounds
74.0 g / 0.7 N
|
| 1 mm |
|
0.19 kg / 0.41 pounds
185.0 g / 1.8 N
|
| 2 mm |
|
0.37 kg / 0.82 pounds
370.0 g / 3.6 N
|
| 3 mm |
|
0.55 kg / 1.22 pounds
555.0 g / 5.4 N
|
| 5 mm |
|
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
|
| 10 mm |
|
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
|
| 11 mm |
|
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
|
| 12 mm |
|
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
|
Table 5: Thermal resistance (stability) - power drop
MW 8x1.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.74 kg / 1.63 pounds
740.0 g / 7.3 N
|
OK |
| 40 °C | -2.2% |
0.72 kg / 1.60 pounds
723.7 g / 7.1 N
|
OK |
| 60 °C | -4.4% |
0.71 kg / 1.56 pounds
707.4 g / 6.9 N
|
|
| 80 °C | -6.6% |
0.69 kg / 1.52 pounds
691.2 g / 6.8 N
|
|
| 100 °C | -28.8% |
0.53 kg / 1.16 pounds
526.9 g / 5.2 N
|
Table 6: Two magnets (repulsion) - field range
MW 8x1.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.46 kg / 3.23 pounds
3 712 Gs
|
0.22 kg / 0.48 pounds
220 g / 2.2 N
|
N/A |
| 1 mm |
1.24 kg / 2.74 pounds
4 007 Gs
|
0.19 kg / 0.41 pounds
187 g / 1.8 N
|
1.12 kg / 2.47 pounds
~0 Gs
|
| 2 mm |
0.98 kg / 2.17 pounds
3 565 Gs
|
0.15 kg / 0.33 pounds
148 g / 1.4 N
|
0.89 kg / 1.95 pounds
~0 Gs
|
| 3 mm |
0.74 kg / 1.63 pounds
3 086 Gs
|
0.11 kg / 0.24 pounds
111 g / 1.1 N
|
0.66 kg / 1.46 pounds
~0 Gs
|
| 5 mm |
0.37 kg / 0.82 pounds
2 196 Gs
|
0.06 kg / 0.12 pounds
56 g / 0.5 N
|
0.34 kg / 0.74 pounds
~0 Gs
|
| 10 mm |
0.06 kg / 0.13 pounds
878 Gs
|
0.01 kg / 0.02 pounds
9 g / 0.1 N
|
0.05 kg / 0.12 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 pounds
199 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
17 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
10 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
6 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
4 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
3 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
2 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MW 8x1.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MW 8x1.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
36.39 km/h
(10.11 m/s)
|
0.03 J | |
| 30 mm |
62.94 km/h
(17.48 m/s)
|
0.09 J | |
| 50 mm |
81.25 km/h
(22.57 m/s)
|
0.15 J | |
| 100 mm |
114.91 km/h
(31.92 m/s)
|
0.29 J |
Table 9: Corrosion resistance
MW 8x1.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 8x1.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 285 Mx | 12.9 µWb |
| Pc Coefficient | 0.27 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 8x1.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.74 kg | Standard |
| Water (riverbed) |
0.85 kg
(+0.11 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Caution: On a vertical wall, the magnet holds merely ~20% of its max power.
2. Steel saturation
*Thin metal sheet (e.g. computer case) severely weakens the holding force.
3. Temperature resistance
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.27
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Advantages and disadvantages of Nd2Fe14B magnets.
Benefits
- They retain attractive force for almost ten years – the loss is just ~1% (based on simulations),
- Magnets perfectly resist against loss of magnetization caused by external fields,
- By covering with a lustrous coating of nickel, the element acquires an proper look,
- Magnetic induction on the working part of the magnet turns out to be very high,
- Through (appropriate) combination of ingredients, they can achieve high thermal resistance, enabling operation at temperatures approaching 230°C and above...
- In view of the potential of flexible shaping and customization to custom projects, NdFeB magnets can be modeled in a variety of forms and dimensions, which increases their versatility,
- Fundamental importance in modern industrial fields – they are utilized in HDD drives, electric drive systems, precision medical tools, and technologically advanced constructions.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Cons
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth securing magnets in a protective case. Such protection not only shields the magnet but also improves its resistance to damage
- Neodymium magnets lose force when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
- They oxidize in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Due to limitations in creating threads and complex shapes in magnets, we propose using cover - magnetic mechanism.
- Health risk resulting from small fragments of magnets pose a threat, when accidentally swallowed, which becomes key in the context of child safety. It is also worth noting that small components of these products can disrupt the diagnostic process medical when they are in the body.
- With large orders the cost of neodymium magnets can be a barrier,
Lifting parameters
Magnetic strength at its maximum – what contributes to it?
- with the contact of a yoke made of special test steel, guaranteeing full magnetic saturation
- with a cross-section no less than 10 mm
- with an ground contact surface
- with zero gap (no impurities)
- during pulling in a direction perpendicular to the plane
- in temp. approx. 20°C
Lifting capacity in practice – influencing factors
- Gap between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by varnish or dirt) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Angle of force application – highest force is reached only during perpendicular pulling. The force required to slide of the magnet along the plate is standardly many times smaller (approx. 1/5 of the lifting capacity).
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of converting into lifting capacity.
- Steel grade – ideal substrate is high-permeability steel. Hardened steels may attract less.
- Surface condition – smooth surfaces guarantee perfect abutment, which improves force. Rough surfaces weaken the grip.
- Heat – neodymium magnets have a negative temperature coefficient. At higher temperatures they are weaker, and in frost gain strength (up to a certain limit).
Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a small distance between the magnet and the plate reduces the holding force.
Precautions when working with neodymium magnets
Do not overheat magnets
Watch the temperature. Heating the magnet to high heat will ruin its magnetic structure and strength.
Do not drill into magnets
Machining of neodymium magnets poses a fire hazard. Magnetic powder oxidizes rapidly with oxygen and is hard to extinguish.
Physical harm
Large magnets can crush fingers instantly. Never place your hand betwixt two strong magnets.
Danger to pacemakers
People with a pacemaker must keep an absolute distance from magnets. The magnetic field can disrupt the functioning of the life-saving device.
Do not give to children
Strictly keep magnets out of reach of children. Choking hazard is significant, and the effects of magnets clamping inside the body are tragic.
Skin irritation risks
Warning for allergy sufferers: The nickel-copper-nickel coating contains nickel. If skin irritation appears, cease handling magnets and use protective gear.
Phone sensors
An intense magnetic field negatively affects the operation of magnetometers in phones and GPS navigation. Keep magnets near a smartphone to avoid damaging the sensors.
Cards and drives
Very strong magnetic fields can erase data on payment cards, hard drives, and other magnetic media. Stay away of min. 10 cm.
Protective goggles
NdFeB magnets are sintered ceramics, which means they are fragile like glass. Collision of two magnets will cause them cracking into shards.
Caution required
Be careful. Neodymium magnets attract from a distance and snap with huge force, often faster than you can move away.
