MW 8x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010101
GTIN: 5906301811008
Diameter Ø [±0,1 mm]
8 mm
Height [±0,1 mm]
1.5 mm
Weight
0.57 g
Magnetization Direction
↑ axial
Load capacity
0.66 kg / 6.47 N
Magnetic Induction
217.52 mT
Coating
[NiCuNi] nickel
0.46 ZŁ with VAT / pcs + price for transport
0.37 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us now
+48 22 499 98 98
or send us a note by means of
form
the contact form page.
Weight as well as form of magnets can be verified with our
power calculator.
Same-day processing for orders placed before 14:00.
MW 8x1.5 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as nickel, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their superior power, neodymium magnets have these key benefits:
- They retain their magnetic properties for nearly ten years – the loss is just ~1% (according to analyses),
- They protect against demagnetization induced by surrounding magnetic influence effectively,
- The use of a decorative silver surface provides a refined finish,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their functional possibilities,
- Key role in new technology industries – they are used in HDDs, electromechanical systems, medical equipment and sophisticated instruments,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall resistance,
- They lose strength at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment, especially when used outside, we recommend using encapsulated magnets, such as those made of plastic,
- Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
- Safety concern related to magnet particles may arise, if ingested accidentally, which is important in the context of child safety. Moreover, tiny components from these products may interfere with diagnostics if inside the body,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum holding power of the magnet – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, determined in ideal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
What influences lifting capacity in practice
The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, however under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.
Handle with Care: Neodymium Magnets
Neodymium magnetic are noted for their fragility, which can cause them to crumble.
Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a serious pressure or even a fracture.
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Be careful!
In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.