tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight, solid steel casing are perfect for use in variable and difficult climate conditions, including snow and rain read...

magnets with holders

Holders with magnets can be used to enhance production processes, underwater discoveries, or locating space rocks from gold more information...

Enjoy delivery of your order on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010010

GTIN: 5906301810094

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

4 mm

Weight

2.36 g

Magnetization Direction

↑ axial

Load capacity

2.21 kg / 21.67 N

Magnetic Induction

386.91 mT

Coating

[NiCuNi] nickel

0.95 with VAT / pcs + price for transport

0.77 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.77 ZŁ
0.95 ZŁ
price from 1125 pcs
0.68 ZŁ
0.84 ZŁ
price from 2250 pcs
0.65 ZŁ
0.80 ZŁ

Do you have trouble choosing?

Pick up the phone and ask +48 888 99 98 98 or get in touch through contact form our website.
Specifications and form of a neodymium magnet can be verified with our force calculator.

Order by 14:00 and we’ll ship today!

MW 10x4 / N38 - cylindrical magnet

Specification/characteristics MW 10x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010010
GTIN
5906301810094
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
2.36 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.21 kg / 21.67 N
Magnetic Induction ~ ?
386.91 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 10x4 / N38 are magnets created of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which outperform traditional ferrite magnets. Thanks to their strength, they are often employed in products that require powerful holding. The typical temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet designated MW 10x4 / N38 with a magnetic strength 2.21 kg has a weight of only 2.36 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the site for the current information and offers, and before visiting, please call.
Although, cylindrical neodymium magnets are very practical in various applications, they can also pose certain risk. Because of their significant magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin as well as other materials, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as silver, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet in classes N50 and N52 is a strong and extremely powerful magnetic piece designed as a cylinder, providing high force and broad usability. Very good price, availability, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • They do not lose their even over approximately 10 years – the decrease of power is only ~1% (theoretically),
  • They remain magnetized despite exposure to strong external fields,
  • In other words, due to the metallic gold coating, the magnet obtains an stylish appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their application range,
  • Important function in cutting-edge sectors – they serve a purpose in hard drives, electromechanical systems, healthcare devices as well as sophisticated instruments,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a external casing is recommended,
  • Possible threat linked to microscopic shards may arise, especially if swallowed, which is important in the health of young users. Furthermore, tiny components from these products can disrupt scanning if inside the body,
  • Due to the price of neodymium, their cost is relatively high,

Magnetic strength at its maximum – what affects it?

The given pulling force of the magnet means the maximum force, measured under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate lowers the holding force.

Caution with Neodymium Magnets

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will bounce and contact together within a distance of several to around 10 cm from each other.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Magnets made of neodymium are incredibly delicate, they easily fall apart as well as can crumble.

Neodymium magnetic are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Be careful!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98