MW 22x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010047
GTIN: 5906301810469
Diameter Ø [±0,1 mm]
22 mm
Height [±0,1 mm]
6 mm
Weight
17.11 g
Magnetization Direction
↑ axial
Load capacity
7.3 kg / 71.59 N
Magnetic Induction
296.78 mT
Coating
[NiCuNi] nickel
6.11 ZŁ with VAT / pcs + price for transport
4.97 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 22 499 98 98
if you prefer get in touch using
inquiry form
the contact page.
Parameters as well as structure of neodymium magnets can be estimated with our
magnetic calculator.
Same-day processing for orders placed before 14:00.
MW 22x6 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of silver to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as silver, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- They are highly resistant to demagnetization caused by external magnetic sources,
- Thanks to the polished finish and gold coating, they have an elegant appearance,
- The outer field strength of the magnet shows elevated magnetic properties,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their application range,
- Significant impact in new technology industries – they serve a purpose in data storage devices, rotating machines, clinical machines along with other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time increases its overall robustness,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is notable in the family environments. Additionally, tiny components from these products can complicate medical imaging when ingested,
- In cases of mass production, neodymium magnet cost may not be economically viable,
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given pulling force of the magnet means the maximum force, calculated in a perfect environment, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- under perpendicular detachment force
- at room temperature
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a minimal clearance {between} the magnet and the plate reduces the holding force.
Caution with Neodymium Magnets
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets may crack or alternatively crumble with uncontrolled joining to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Keep neodymium magnets away from GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are known for being fragile, which can cause them to crumble.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Caution!
In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.
