tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in difficult, demanding weather, including snow and rain check...

magnetic holders

Holders with magnets can be used to facilitate manufacturing, exploring underwater areas, or locating meteors from gold more...

We promise to ship ordered magnets on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 22x6 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010047

GTIN: 5906301810469

5

Diameter Ø [±0,1 mm]

22 mm

Height [±0,1 mm]

6 mm

Weight

17.11 g

Magnetization Direction

↑ axial

Load capacity

7.3 kg / 71.59 N

Magnetic Induction

296.78 mT

Coating

[NiCuNi] nickel

4.16 with VAT / pcs + price for transport

3.38 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.38 ZŁ
4.16 ZŁ
price from 600 pcs
3.18 ZŁ
3.91 ZŁ
price from 2200 pcs
2.97 ZŁ
3.66 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 22x6 / N38 - cylindrical magnet

Specification/characteristics MW 22x6 / N38 - cylindrical magnet
properties
values
Cat. no.
010047
GTIN
5906301810469
Production/Distribution
Dhit sp. z o.o.
Country of origin
Polska / Chiny / Niemcy
Customs code
85059029
Diameter Ø
22 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
17.11 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.3 kg / 71.59 N
Magnetic Induction ~ ?
296.78 mT
Coating
[NiCuNi] nickel
tolerancja wykonania
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 22x6 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Because of their strength, they are often used in products that need powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet named MW 22x6 / N38 with a magnetic strength ${capacity} kg has a weight of only ${weight} grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the current information and offers, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in various applications, they can also pose certain risk. Due to their significant magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin as well as other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.

Advantages and disadvantages of neodymium magnets

Neodymium magnets, also known as NdFeB magnets, are currently the strongest permanent magnets available on the market. Their exceptional magnetic properties make them suitable for various industries, technologies, and everyday life. Below are the key advantages:

  • Immense attractive force: Even small neodymium magnets generate a very strong magnetic field.
  • High coercivity: They are resistant to demagnetization by external magnetic fields.
  • Wide operating temperature range: Standard neodymium magnets operate up to 80°C, with special versions up to 230°C.
  • Variety of shapes and sizes: Available in many forms, making them easy to adapt to specific applications.
  • Relatively low price compared to strength: They offer the best strength-to-price ratio among all magnets.
  • Longevity: With proper use, they retain their magnetic properties for many years.
  • Versatility of applications: From electric motors to speakers, separators, toys, and jewelry.

Despite numerous advantages, neodymium magnets also have certain disadvantages to consider:

  • Brittleness: They are hard but brittle and prone to cracking or chipping upon impact.
  • Limited operating temperature for standard versions: Above the Curie temperature, they lose their magnetic properties.
  • Strong magnetic field can be dangerous: They can damage electronics, magnetic cards, and pose a risk of attracting metal objects with great force.
  • Difficulties in mechanical processing: Due to their hardness and brittleness, processing them is complex.

Handle Neodymium Magnets Carefully

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets bounce and also touch each other mutually within a radius of several to almost 10 cm from each other.

Neodymium magnetic are especially fragile, which leads to shattering.

Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

 It is essential to maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98