XT-5 magnetyzery do silników - DIESEL + powietrze - XT-5 magnetizer
XT-5 magnetizer
Catalog no 060246
GTIN: 5906301812401
Weight
190 g
94.99 ZŁ with VAT / pcs + price for transport
77.23 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us
+48 22 499 98 98
if you prefer contact us using
request form
the contact form page.
Force and appearance of magnetic components can be analyzed on our
magnetic calculator.
Order by 14:00 and we’ll ship today!
XT-5 magnetyzery do silników - DIESEL + powietrze - XT-5 magnetizer
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:
- Their power is durable, and after around ten years, it drops only by ~1% (theoretically),
- They show superior resistance to demagnetization from external field exposure,
- By applying a bright layer of gold, the element gains a clean look,
- Magnetic induction on the surface of these magnets is impressively powerful,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
- With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
- Key role in advanced technical fields – they are utilized in computer drives, electromechanical systems, diagnostic apparatus and sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which allows for use in miniature devices
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage while also increases its overall strength,
- They lose magnetic force at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
- Potential hazard from tiny pieces may arise, if ingested accidentally, which is important in the context of child safety. Furthermore, tiny components from these devices may disrupt scanning once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Breakaway strength of the magnet in ideal conditions – what affects it?
The given pulling force of the magnet means the maximum force, measured in the best circumstances, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- at room temperature
Impact of factors on magnetic holding capacity in practice
Practical lifting force is determined by factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet and the plate lowers the load capacity.
Precautions
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets are the strongest magnets ever invented. Their power can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets will bounce and touch together within a radius of several to almost 10 cm from each other.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Magnets made of neodymium are noted for their fragility, which can cause them to crumble.
Neodymium magnets are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Safety precautions!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
