XT-5 magnetyzery do silników - DIESEL + powietrze - XT-5 magnetizer
XT-5 magnetizer
Catalog no 060246
GTIN: 5906301812401
Weight
190 g
94.99 ZŁ with VAT / pcs + price for transport
77.23 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Contact us by phone
+48 888 99 98 98
if you prefer send us a note through
inquiry form
through our site.
Strength as well as structure of neodymium magnets can be reviewed on our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
XT-5 magnetyzery do silników - DIESEL + powietrze - XT-5 magnetizer
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They do not lose their even during nearly ten years – the decrease of power is only ~1% (theoretically),
- They are highly resistant to demagnetization caused by external magnetic sources,
- Because of the reflective layer of nickel, the component looks visually appealing,
- Magnetic induction on the surface of these magnets is impressively powerful,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- The ability for custom shaping and adaptation to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Significant impact in modern technologies – they are utilized in data storage devices, electric motors, clinical machines as well as sophisticated instruments,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
- Safety concern from tiny pieces may arise, if ingested accidentally, which is important in the family environments. Moreover, miniature parts from these products may hinder health screening if inside the body,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in ideal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
Determinants of lifting force in real conditions
The lifting capacity of a magnet is determined by in practice key elements, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.
Precautions
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Neodymium magnets will jump and also touch together within a radius of several to almost 10 cm from each other.
Do not give neodymium magnets to youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnetic are especially delicate, which leads to shattering.
Neodymium magnets are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
