MW 8x3 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010103
GTIN: 5906301811022
Diameter Ø [±0,1 mm]
8 mm
Height [±0,1 mm]
3 mm
Weight
1.13 g
Magnetization Direction
↑ axial
Load capacity
1.33 kg / 13.04 N
Magnetic Induction
371.53 mT
Coating
[NiCuNi] nickel
1.06 ZŁ with VAT / pcs + price for transport
0.86 ZŁ net + 23% VAT / pcs
0.41 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Looking for a better price?
Give us a call
+48 22 499 98 98
otherwise contact us through
request form
the contact section.
Force and structure of a magnet can be calculated on our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
MW 8x3 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of silver to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as nickel, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their immense magnetic power, neodymium magnets offer the following advantages:
- They do not lose their even during around 10 years – the loss of power is only ~1% (according to tests),
- They remain magnetized despite exposure to strong external fields,
- By applying a shiny layer of silver, the element gains a sleek look,
- They have extremely strong magnetic induction on the surface of the magnet,
- With the right combination of materials, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for custom shaping and adjustment to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
- Significant impact in advanced technical fields – they are utilized in computer drives, electric motors, healthcare devices and technologically developed systems,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
- Potential hazard related to magnet particles may arise, when consumed by mistake, which is crucial in the family environments. Moreover, minuscule fragments from these products might interfere with diagnostics if inside the body,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Exercise Caution with Neodymium Magnets
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Neodymium magnets are extremely fragile, they easily crack and can crumble.
Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Neodymium magnets bounce and touch each other mutually within a radius of several to almost 10 cm from each other.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Be careful!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.