e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for fishing F400 GOLD

Where to buy powerful magnet? Magnet holders in solid and airtight enclosure are ideally suited for use in difficult, demanding climate conditions, including during rain and snow see...

magnets with holders

Magnetic holders can be used to enhance production processes, underwater exploration, or finding meteors from gold read...

Enjoy delivery of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGZ 20x15x7 [M4] GZ / N38 - magnetic holder external thread

magnetic holder external thread

Catalog no 190322

GTIN: 5906301813811

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

15 mm

Height [±0,1 mm]

7 mm

Weight

14 g

Load capacity

9 kg / 88.26 N

7.22 with VAT / pcs + price for transport

5.87 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.87 ZŁ
7.22 ZŁ
price from 100 pcs
5.52 ZŁ
6.79 ZŁ
price from 150 pcs
5.17 ZŁ
6.35 ZŁ

Can't decide what to choose?

Pick up the phone and ask +48 888 99 98 98 if you prefer drop us a message via form the contact section.
Strength along with form of magnets can be calculated with our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

UMGZ 20x15x7 [M4] GZ / N38 - magnetic holder external thread

Specification/characteristics UMGZ 20x15x7 [M4] GZ / N38 - magnetic holder external thread
properties
values
Cat. no.
190322
GTIN
5906301813811
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Height
7 mm [±0,1 mm]
Weight
14 g [±0,1 mm]
Load capacity ~ ?
9 kg / 88.26 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Mounts with built-in neodymium magnets with external thread offer robust accessories, used across various fields, including construction, agriculture, or advertising. Their design is based on a strong NdFeB magnet, embedded within a durable steel housing protected by an anti-corrosion layer. Threaded pin in sizes M4–M8 allows mounting into threaded holes, which enables to screw in nameplates, lighting, tools. With the help of a strong magnetic field, these holders offer a pulling strength of up to 68 kg, depending on. Applications of the holders include not only workshops and home installations. Certain models feature a protective layer, that protects surfaces from scratches and improves moisture resistance. However, it is important to remember NdFeB magnets can be fragile and may break under excessive tightening. Caution during installation is recommended, and holders should be kept away from electronics. To ensure reliability, one should opt for certified products.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense pulling force, neodymium magnets offer the following advantages:

  • They retain their attractive force for nearly 10 years – the loss is just ~1% (in theory),
  • They show exceptional resistance to demagnetization from external field exposure,
  • By applying a reflective layer of silver, the element gains a clean look,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Important function in modern technologies – they find application in HDDs, electric drives, medical equipment as well as technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in miniature devices

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time enhances its overall resistance,
  • They lose strength at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Potential hazard related to magnet particles may arise, especially if swallowed, which is crucial in the family environments. Furthermore, tiny components from these magnets may hinder health screening if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Maximum holding power of the magnet – what affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in the best circumstances, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.

Handle Neodymium Magnets with Caution

 It is essential to maintain neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Magnets made of neodymium are especially fragile, resulting in their breakage.

Magnets made of neodymium are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98