UMGZ 20x15x7 [M4] GZ / N38 - magnetic holder external thread
magnetic holder external thread
Catalog no 190322
GTIN: 5906301813811
Diameter Ø [±0,1 mm]
20 mm
Height [±0,1 mm]
15 mm
Height [±0,1 mm]
7 mm
Weight
14 g
Load capacity
9 kg / 88.26 N
7.22 ZŁ with VAT / pcs + price for transport
5.87 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us now
+48 22 499 98 98
otherwise get in touch through
request form
the contact page.
Specifications along with form of magnetic components can be checked on our
online calculation tool.
Same-day processing for orders placed before 14:00.
UMGZ 20x15x7 [M4] GZ / N38 - magnetic holder external thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
- They protect against demagnetization induced by surrounding magnetic influence remarkably well,
- By applying a shiny layer of gold, the element gains a clean look,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping or adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Important function in cutting-edge sectors – they are utilized in hard drives, electric drives, diagnostic apparatus or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in compact constructions
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also reinforces its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
- Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
- Potential hazard from tiny pieces may arise, especially if swallowed, which is notable in the family environments. It should also be noted that minuscule fragments from these assemblies have the potential to complicate medical imaging once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Maximum magnetic pulling force – what contributes to it?
The given holding capacity of the magnet corresponds to the highest holding force, measured under optimal conditions, namely:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
Determinants of practical lifting force of a magnet
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.
Exercise Caution with Neodymium Magnets
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Do not give neodymium magnets to children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Magnets made of neodymium are extremely fragile, leading to their cracking.
Neodymium magnetic are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Neodymium magnets bounce and clash mutually within a radius of several to around 10 cm from each other.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Exercise caution!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.
