tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are in stock for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase powerful magnet? Holders with magnets in solid and airtight steel casing are perfect for use in variable and difficult climate conditions, including in the rain and snow see more...

magnetic holders

Magnetic holders can be used to facilitate manufacturing, underwater discoveries, or finding space rocks made of metal read...

We promise to ship your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships tomorrow

UMGZ 20x15x7 [M4] GZ / N38 - magnetic holder external thread

magnetic holder external thread

Catalog no 190322

GTIN: 5906301813811

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

15 mm

Height [±0,1 mm]

7 mm

Weight

14 g

Load capacity

9 kg / 88.26 N

7.22 with VAT / pcs + price for transport

5.87 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.87 ZŁ
7.22 ZŁ
price from 100 pcs
5.52 ZŁ
6.79 ZŁ
price from 150 pcs
5.17 ZŁ
6.35 ZŁ

Want to negotiate?

Contact us by phone +48 22 499 98 98 alternatively let us know by means of contact form through our site.
Force as well as shape of magnetic components can be verified on our force calculator.

Orders submitted before 14:00 will be dispatched today!

UMGZ 20x15x7 [M4] GZ / N38 - magnetic holder external thread

Specification/characteristics UMGZ 20x15x7 [M4] GZ / N38 - magnetic holder external thread
properties
values
Cat. no.
190322
GTIN
5906301813811
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Height
7 mm [±0,1 mm]
Weight
14 g [±0,1 mm]
Load capacity ~ ?
9 kg / 88.26 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A magnet with a built-in bolt is great for screwing with a nut. Just put the thread through the hole and tighten the nut on the other side. They are commonly used in machine building, exhibition stands, and lighting.
Tightening too hard may cause the stud to turn in the cup or strip the thread. Do not use the magnet as a structural bolt carrying huge mechanical loads. The construction is durable and adapted to industrial conditions.
Standard neodymium holders are designed to work in temperatures up to 80°C. If you need resistance to higher temperatures, ask about special versions. Avoid mounting directly on hot engine components.
We use standardized threads that fit typical nuts available in stores. Ensure the thread length is sufficient to pass through the hole in your material. It is a solid threaded connection.
By shielding the sides and top, all magnet power is directed downwards, giving higher lifting capacity. This force drops very quickly with increasing distance (air gap).

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetism, neodymium magnets have these key benefits:

  • They retain their attractive force for nearly 10 years – the drop is just ~1% (according to analyses),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • In other words, due to the metallic nickel coating, the magnet obtains an stylish appearance,
  • They have exceptional magnetic induction on the surface of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for customized forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Important function in modern technologies – they are utilized in data storage devices, rotating machines, clinical machines and high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of synthetic coating for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is significant in the protection of children. Moreover, tiny components from these devices can interfere with diagnostics after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what affects it?

The given strength of the magnet corresponds to the optimal strength, measured under optimal conditions, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • under standard ambient temperature

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are incredibly fragile, they easily crack and can crumble.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If joining of neodymium magnets is not under control, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should hold them extremely strongly.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98