tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight and durable steel enclosure are ideally suited for use in challenging weather, including in the rain and snow more information...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater exploration, or searching for space rocks from gold more...

We promise to ship your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 320x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090217

GTIN: 5906301812524

5

length [±0,1 mm]

320 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

20550 g

3635.14 with VAT / pcs + price for transport

2955.40 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2955.40 ZŁ
3635.14 ZŁ
price from 5 pcs
2778.08 ZŁ
3417.03 ZŁ

Not sure which magnet to buy?

Give us a call +48 888 99 98 98 otherwise contact us through contact form the contact form page.
Specifications along with shape of a magnet can be estimated on our online calculation tool.

Same-day shipping for orders placed before 14:00.

BM 320x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 320x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090217
GTIN
5906301812524
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
320 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
20550 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which are based on strong neodymium magnets to capture unwanted iron elements. Any metal parts are attracted to the underside of the beam. The use of such beams is particularly common in recycling, mineral raw materials and many other industries.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. The larger the cross-section of the beam, the greater the magnetic field range. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The magnetic beam works due to the use of neodymium magnets, which create a field capable of attracting iron contaminants. This causes all metals in the transport to be captured and stopped. Mounted at the right angle, it can function as a chute separator. The stainless steel housing protects the magnets, ensuring long-lasting and effective operation in various industries.
Magnetic beams effectively capture iron elements, such as balls with a diameter of 5-10 mm, bolts and nuts, iron nails. The magnetic field strength of the beam allows for capturing metals from a distance of up to 120 mm. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Magnetic beams are indispensable in industry due to their effectiveness in metal separation, especially in industrial sectors requiring precise contaminant separation. Equipped with neodymium magnets, these beams guarantee effectiveness in challenging industrial conditions. Additionally, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their consistent power, neodymium magnets have these key benefits:

  • They retain their full power for around 10 years – the loss is just ~1% (according to analyses),
  • They are extremely resistant to demagnetization caused by external magnetic sources,
  • By applying a reflective layer of nickel, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is notably high,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their application range,
  • Important function in cutting-edge sectors – they are utilized in data storage devices, electromechanical systems, medical equipment along with high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing threads directly in the magnet,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is crucial in the health of young users. Furthermore, small elements from these devices can complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum lifting capacity of the magnetwhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in the best circumstances, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the load capacity is reduced by as much as 5 times. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets will bounce and contact together within a distance of several to around 10 cm from each other.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Magnets made of neodymium are particularly delicate, which leads to shattering.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

 It is essential to keep neodymium magnets away from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Exercise caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98