tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. All "neodymium magnets" in our store are in stock for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for searching F300 GOLD

Where to buy strong magnet? Magnetic holders in solid and airtight steel casing are perfect for use in difficult weather conditions, including in the rain and snow read...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, underwater discoveries, or locating meteors made of metal see...

We promise to ship your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 320x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090217

GTIN: 5906301812524

5

length [±0,1 mm]

320 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

20550 g

3 635.14 with VAT / pcs + price for transport

2 955.40 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2 955.40 ZŁ
3 635.14 ZŁ
price from 5 pcs
2 778.08 ZŁ
3 417.04 ZŁ

Do you have questions?

Contact us by phone +48 888 99 98 98 if you prefer send us a note via contact form the contact section.
Lifting power as well as shape of magnetic components can be reviewed on our our magnetic calculator.

Order by 14:00 and we’ll ship today!

BM 320x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 320x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090217
GTIN
5906301812524
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
320 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
20550 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which are based on strong neodymium magnets to capture unwanted iron elements. Metallic elements float up and attach to the bottom surface of the beam. Magnetic beams are widely used in the food industry, plastic processing and other industrial sectors.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. A larger cross-section allows the beam to be suspended higher above the belt. For example, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The basis of the magnetic beam’s operation are strong neodymium magnets, which create a field capable of attracting iron contaminants. This causes all metals in the transport to be captured and stopped. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, the device is durable and reliable in harsh industrial conditions.
These devices are used for removing any iron contaminants, such as metal balls, bolts and nuts, metal items, such as nails or keys. The magnetic field strength of the beam allows for capturing metals from a distance of up to 120 mm. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Their application allows for the effective removal of iron contaminants from transported materials, which is crucial in industries such as food processing, recycling, plastic processing, and mineral raw materials. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
  • They protect against demagnetization induced by external magnetic fields remarkably well,
  • The use of a decorative nickel surface provides a eye-catching finish,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their functional possibilities,
  • Key role in modern technologies – they find application in hard drives, electric motors, medical equipment as well as technologically developed systems,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall resistance,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
  • Safety concern related to magnet particles may arise, in case of ingestion, which is notable in the health of young users. Additionally, tiny components from these devices can interfere with diagnostics when ingested,
  • Due to the price of neodymium, their cost is above average,

Maximum holding power of the magnet – what affects it?

The given lifting capacity of the magnet represents the maximum lifting force, assessed in ideal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Key elements affecting lifting force

In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Precautions

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

 Maintain neodymium magnets far from youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets jump and also clash mutually within a distance of several to almost 10 cm from each other.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnetic are highly susceptible to damage, leading to shattering.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Safety rules!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98