e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are available for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight and durable enclosure are excellent for use in difficult weather, including in the rain and snow see...

magnetic holders

Magnetic holders can be applied to improve production processes, underwater exploration, or finding meteors made of ore see more...

We promise to ship your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 320x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090217

GTIN: 5906301812524

5

length [±0,1 mm]

320 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

20550 g

3635.14 with VAT / pcs + price for transport

2955.40 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2955.40 ZŁ
3635.14 ZŁ
price from 5 pcs
2778.08 ZŁ
3417.03 ZŁ

Want to negotiate?

Give us a call +48 888 99 98 98 otherwise let us know through our online form the contact form page.
Specifications as well as appearance of magnets can be analyzed on our power calculator.

Same-day processing for orders placed before 14:00.

BM 320x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 320x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090217
GTIN
5906301812524
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
320 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
20550 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which are based on strong neodymium magnets to separate iron contaminants from the transported material. Metallic elements float up and attach to the bottom surface of the beam. Magnetic beams are widely used in the food industry, plastic processing and many other industries.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. The larger the cross-section of the beam, the greater the magnetic field range. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, whereas for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The magnetic beam works due to the use of neodymium magnets, which create a field capable of attracting iron contaminants. Metal objects are lifted and attach to the underside of the beam. The beam can be mounted above the conveyor or set at an angle as a chute separator. Thanks to its sealed housing made of stainless steel, the device is durable and reliable in harsh industrial conditions.
These devices are used for removing any iron contaminants, such as balls with a diameter of 5-10 mm, M5-M10 nuts, iron nails. The magnetic field strength of the beam allows for capturing metals from a distance of up to 120 mm. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Their application allows for the effective removal of iron contaminants from transported materials, which is crucial in industries such as food processing, recycling, plastic processing, and mineral raw materials. Equipped with neodymium magnets, these beams guarantee effectiveness in challenging industrial conditions. Additionally, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable power, neodymium magnets have these key benefits:

  • Their power is maintained, and after around 10 years, it drops only by ~1% (theoretically),
  • They remain magnetized despite exposure to magnetic noise,
  • By applying a reflective layer of silver, the element gains a sleek look,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Key role in advanced technical fields – they are utilized in hard drives, rotating machines, healthcare devices as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which allows for use in miniature devices

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall robustness,
  • They lose field intensity at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Possible threat due to small fragments may arise, especially if swallowed, which is notable in the health of young users. Moreover, small elements from these magnets might hinder health screening once in the system,
  • Due to the price of neodymium, their cost is considerably higher,

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in a perfect environment, specifically:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

What influences lifting capacity in practice

The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the holding force is lower. Moreover, even a small distance {between} the magnet and the plate lowers the lifting capacity.

We Recommend Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Neodymium magnetic are particularly delicate, which leads to shattering.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are the strongest magnets ever created, and their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Safety precautions!

To show why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98