tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are available for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight, solid steel enclosure are excellent for use in difficult climate conditions, including snow and rain see...

magnetic holders

Holders with magnets can be used to improve production, underwater discoveries, or searching for space rocks from gold more...

Order is shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x175 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130369

GTIN: 5906301813170

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

175 mm

Weight

0.01 g

541.20 with VAT / pcs + price for transport

440.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
440.00 ZŁ
541.20 ZŁ
price from 10 pcs
396.00 ZŁ
487.08 ZŁ

Not sure what to buy?

Give us a call +48 888 99 98 98 if you prefer let us know through inquiry form the contact section.
Lifting power and shape of neodymium magnets can be tested using our force calculator.

Same-day processing for orders placed before 14:00.

SM 25x175 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x175 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130369
GTIN
5906301813170
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
175 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to effectively segregate ferromagnetic elements from the mixture. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in the food sector for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, often called cylindrical magnets, find application in food production, metal separation as well as waste processing. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets placed in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, which enables simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Generally it is believed that the greater the magnet's power, the more effective. Nevertheless, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. By contrast, when the magnet is thick, the force lines are extended and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, AISI 316 steel is highly recommended due to its excellent corrosion resistance.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended washing after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Magnetic field measurements should be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their magnetic properties for nearly ten years – the drop is just ~1% (based on simulations),
  • They show superior resistance to demagnetization from external field exposure,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for accurate shaping and adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Significant impact in modern technologies – they are utilized in hard drives, rotating machines, medical equipment or even sophisticated instruments,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time increases its overall durability,
  • They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Safety concern linked to microscopic shards may arise, when consumed by mistake, which is important in the protection of children. Furthermore, miniature parts from these products have the potential to disrupt scanning when ingested,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum lifting force for a neodymium magnet – what it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in ideal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.

Be Cautious with Neodymium Magnets

Magnets made of neodymium are highly susceptible to damage, leading to shattering.

Neodymium magnetic are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Safety precautions!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98