tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow more...

magnets with holders

Magnetic holders can be used to enhance manufacturing, underwater discoveries, or finding space rocks made of metal more information...

We promise to ship your order on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 80x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010100

GTIN: 5906301810995

5

Diameter Ø [±0,1 mm]

80 mm

Height [±0,1 mm]

30 mm

Weight

1130.97 g

Magnetization Direction

↑ axial

Load capacity

132.7 kg / 1301.34 N

Magnetic Induction

371.95 mT

Coating

[NiCuNi] nickel

415.00 with VAT / pcs + price for transport

337.40 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
337.40 ZŁ
415.00 ZŁ
price from 5 pcs
317.16 ZŁ
390.11 ZŁ
price from 10 pcs
293.54 ZŁ
361.05 ZŁ

Looking for a better price?

Call us +48 22 499 98 98 if you prefer let us know through inquiry form the contact page.
Weight and appearance of magnetic components can be verified on our power calculator.

Same-day shipping for orders placed before 14:00.

MW 80x30 / N38 - cylindrical magnet

Specification/characteristics MW 80x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010100
GTIN
5906301810995
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
80 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
1130.97 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
132.7 kg / 1301.34 N
Magnetic Induction ~ ?
371.95 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 80x30 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which outperform traditional ferrite magnets. Because of their power, they are often employed in devices that need powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 80x30 / N38 with a magnetic lifting capacity of 132.7 kg weighs only 1130.97 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of gold to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the website for the latest information as well as promotions, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain dangers. Due to their significant magnetic power, they can attract metallic objects with great force, which can lead to crushing skin or other surfaces, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with additional metals and then forming and heat treating. Their unmatched magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as nickel, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A cylindrical magnet N50 and N52 is a powerful and highly strong magnetic piece with the shape of a cylinder, that provides strong holding power and universal application. Very good price, availability, durability and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They retain their attractive force for nearly ten years – the drop is just ~1% (in theory),
  • They remain magnetized despite exposure to strong external fields,
  • Thanks to the shiny finish and silver coating, they have an aesthetic appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Wide application in advanced technical fields – they are used in data storage devices, electromechanical systems, medical equipment and high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and strengthens its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment, especially when used outside, we recommend using waterproof magnets, such as those made of plastic,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Safety concern from tiny pieces may arise, when consumed by mistake, which is crucial in the protection of children. It should also be noted that small elements from these products have the potential to hinder health screening when ingested,
  • Due to a complex production process, their cost is relatively high,

Highest magnetic holding forcewhat contributes to it?

The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Determinants of lifting force in real conditions

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.

Precautions

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are extremely delicate, they easily crack as well as can crumble.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Safety rules!

To show why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98