MW 7x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010393
GTIN/EAN: 5906301811091
Diameter Ø
7 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.43 g
Magnetization Direction
↑ axial
Load capacity
0.69 kg / 6.75 N
Magnetic Induction
243.98 mT / 2440 Gs
Coating
[NiCuNi] Nickel
0.369 ZŁ with VAT / pcs + price for transport
0.300 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
or send us a note via
request form
the contact page.
Specifications along with form of neodymium magnets can be analyzed using our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
Technical details - MW 7x1.5 / N38 - cylindrical magnet
Specification / characteristics - MW 7x1.5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010393 |
| GTIN/EAN | 5906301811091 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 7 mm [±0,1 mm] |
| Height | 1.5 mm [±0,1 mm] |
| Weight | 0.43 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.69 kg / 6.75 N |
| Magnetic Induction ~ ? | 243.98 mT / 2440 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the assembly - technical parameters
Presented values constitute the direct effect of a mathematical calculation. Results are based on algorithms for the class Nd2Fe14B. Real-world performance might slightly deviate from the simulation results. Please consider these calculations as a reference point for designers.
Table 1: Static pull force (force vs distance) - power drop
MW 7x1.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2438 Gs
243.8 mT
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
weak grip |
| 1 mm |
1900 Gs
190.0 mT
|
0.42 kg / 0.92 lbs
419.1 g / 4.1 N
|
weak grip |
| 2 mm |
1308 Gs
130.8 mT
|
0.20 kg / 0.44 lbs
198.6 g / 1.9 N
|
weak grip |
| 3 mm |
859 Gs
85.9 mT
|
0.09 kg / 0.19 lbs
85.7 g / 0.8 N
|
weak grip |
| 5 mm |
380 Gs
38.0 mT
|
0.02 kg / 0.04 lbs
16.7 g / 0.2 N
|
weak grip |
| 10 mm |
79 Gs
7.9 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
weak grip |
| 15 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Shear capacity (wall)
MW 7x1.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| 1 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MW 7x1.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.21 kg / 0.46 lbs
207.0 g / 2.0 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 7x1.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
|
| 1 mm |
|
0.17 kg / 0.38 lbs
172.5 g / 1.7 N
|
| 2 mm |
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| 3 mm |
|
0.52 kg / 1.14 lbs
517.5 g / 5.1 N
|
| 5 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 10 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 11 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 12 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 7x1.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
OK |
| 40 °C | -2.2% |
0.67 kg / 1.49 lbs
674.8 g / 6.6 N
|
OK |
| 60 °C | -4.4% |
0.66 kg / 1.45 lbs
659.6 g / 6.5 N
|
|
| 80 °C | -6.6% |
0.64 kg / 1.42 lbs
644.5 g / 6.3 N
|
|
| 100 °C | -28.8% |
0.49 kg / 1.08 lbs
491.3 g / 4.8 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MW 7x1.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.41 kg / 3.11 lbs
4 025 Gs
|
0.21 kg / 0.47 lbs
212 g / 2.1 N
|
N/A |
| 1 mm |
1.15 kg / 2.53 lbs
4 398 Gs
|
0.17 kg / 0.38 lbs
172 g / 1.7 N
|
1.03 kg / 2.28 lbs
~0 Gs
|
| 2 mm |
0.86 kg / 1.89 lbs
3 801 Gs
|
0.13 kg / 0.28 lbs
129 g / 1.3 N
|
0.77 kg / 1.70 lbs
~0 Gs
|
| 3 mm |
0.60 kg / 1.33 lbs
3 185 Gs
|
0.09 kg / 0.20 lbs
90 g / 0.9 N
|
0.54 kg / 1.19 lbs
~0 Gs
|
| 5 mm |
0.27 kg / 0.59 lbs
2 125 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.53 lbs
~0 Gs
|
| 10 mm |
0.03 kg / 0.08 lbs
759 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
159 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MW 7x1.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - warning
MW 7x1.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
40.43 km/h
(11.23 m/s)
|
0.03 J | |
| 30 mm |
69.97 km/h
(19.44 m/s)
|
0.08 J | |
| 50 mm |
90.34 km/h
(25.09 m/s)
|
0.14 J | |
| 100 mm |
127.75 km/h
(35.49 m/s)
|
0.27 J |
Table 9: Anti-corrosion coating durability
MW 7x1.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 7x1.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 075 Mx | 10.8 µWb |
| Pc Coefficient | 0.31 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 7x1.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.69 kg | Standard |
| Water (riverbed) |
0.79 kg
(+0.10 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet retains just ~20% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) drastically limits the holding force.
3. Power loss vs temp
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.31
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also offers
Advantages as well as disadvantages of neodymium magnets.
Strengths
- They do not lose strength, even after approximately 10 years – the drop in lifting capacity is only ~1% (according to tests),
- They maintain their magnetic properties even under strong external field,
- A magnet with a shiny gold surface has better aesthetics,
- Magnets are characterized by impressive magnetic induction on the surface,
- Thanks to resistance to high temperature, they are capable of working (depending on the form) even at temperatures up to 230°C and higher...
- In view of the ability of precise forming and adaptation to specialized requirements, magnetic components can be modeled in a broad palette of shapes and sizes, which increases their versatility,
- Fundamental importance in innovative solutions – they are commonly used in magnetic memories, electric motors, medical devices, also technologically advanced constructions.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in small dimensions, which makes them useful in miniature devices
Limitations
- To avoid cracks upon strong impacts, we suggest using special steel holders. Such a solution secures the magnet and simultaneously increases its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets start to rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation as well as corrosion.
- Due to limitations in producing threads and complex forms in magnets, we propose using a housing - magnetic mechanism.
- Potential hazard to health – tiny shards of magnets pose a threat, when accidentally swallowed, which becomes key in the context of child safety. Additionally, small components of these magnets are able to complicate diagnosis medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Optimal lifting capacity of a neodymium magnet – what it depends on?
- using a sheet made of mild steel, acting as a circuit closing element
- possessing a thickness of minimum 10 mm to ensure full flux closure
- with a plane cleaned and smooth
- with direct contact (no paint)
- under perpendicular application of breakaway force (90-degree angle)
- in temp. approx. 20°C
Impact of factors on magnetic holding capacity in practice
- Distance (betwixt the magnet and the metal), since even a microscopic distance (e.g. 0.5 mm) results in a decrease in lifting capacity by up to 50% (this also applies to paint, rust or debris).
- Angle of force application – highest force is reached only during perpendicular pulling. The shear force of the magnet along the plate is typically several times smaller (approx. 1/5 of the lifting capacity).
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Material type – ideal substrate is pure iron steel. Cast iron may attract less.
- Surface condition – smooth surfaces guarantee perfect abutment, which increases field saturation. Rough surfaces reduce efficiency.
- Thermal conditions – NdFeB sinters have a sensitivity to temperature. At higher temperatures they are weaker, and at low temperatures they can be stronger (up to a certain limit).
Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the lifting capacity is smaller. In addition, even a minimal clearance between the magnet and the plate reduces the lifting capacity.
Safety rules for work with neodymium magnets
Pacemakers
Patients with a pacemaker have to maintain an large gap from magnets. The magnetism can interfere with the operation of the implant.
Magnet fragility
Despite metallic appearance, neodymium is brittle and cannot withstand shocks. Do not hit, as the magnet may shatter into sharp, dangerous pieces.
GPS and phone interference
GPS units and mobile phones are extremely susceptible to magnetic fields. Direct contact with a strong magnet can permanently damage the sensors in your phone.
Do not drill into magnets
Fire hazard: Neodymium dust is explosive. Avoid machining magnets in home conditions as this may cause fire.
Power loss in heat
Standard neodymium magnets (grade N) undergo demagnetization when the temperature exceeds 80°C. The loss of strength is permanent.
Allergy Warning
Medical facts indicate that nickel (standard magnet coating) is a strong allergen. If your skin reacts to metals, prevent direct skin contact and choose versions in plastic housing.
Bodily injuries
Large magnets can crush fingers in a fraction of a second. Under no circumstances place your hand between two attracting surfaces.
Handling rules
Use magnets consciously. Their powerful strength can surprise even professionals. Stay alert and do not underestimate their power.
Product not for children
Only for adults. Tiny parts can be swallowed, causing intestinal necrosis. Keep out of reach of children and animals.
Electronic devices
Avoid bringing magnets near a purse, laptop, or screen. The magnetism can irreversibly ruin these devices and wipe information from cards.
