Powerful neodymium magnets: discs and cylinders

Need strong magnetic field? Our range includes wide selection of disc, cylindrical and ring magnets. Best choice for home use, garage and industrial tasks. Check our offer available immediately.

check price list and dimensions

Magnets for underwater searches

Discover your passion with treasure salvaging! Our specialized grips (F200, F400) provide grip certainty and huge lifting capacity. Solid, corrosion-resistant housing and reinforced ropes are reliable in challenging water conditions.

find your set

Reliable threaded grips

Professional solutions for fixing without drilling. Threaded mounts (M8, M10, M12) guarantee quick improvement of work on production halls. They are indispensable installing lamps, sensors and ads.

check industrial applications

📦 Fast shipping: buy by 14:00, package goes out today!

Dhit sp. z o.o.
Product available Ships tomorrow

MW 7x1.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010393

GTIN/EAN: 5906301811091

5.00

Diameter Ø

7 mm [±0,1 mm]

Height

1.5 mm [±0,1 mm]

Weight

0.43 g

Magnetization Direction

↑ axial

Load capacity

0.69 kg / 6.75 N

Magnetic Induction

243.98 mT / 2440 Gs

Coating

[NiCuNi] Nickel

0.369 with VAT / pcs + price for transport

0.300 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.300 ZŁ
0.369 ZŁ
price from 2000 pcs
0.282 ZŁ
0.347 ZŁ
price from 8400 pcs
0.264 ZŁ
0.325 ZŁ
Want to negotiate?

Call us +48 888 99 98 98 otherwise let us know through our online form the contact page.
Force and form of magnetic components can be checked on our power calculator.

Order by 14:00 and we’ll ship today!

Technical parameters - MW 7x1.5 / N38 - cylindrical magnet

Specification / characteristics - MW 7x1.5 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010393
GTIN/EAN 5906301811091
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 7 mm [±0,1 mm]
Height 1.5 mm [±0,1 mm]
Weight 0.43 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.69 kg / 6.75 N
Magnetic Induction ~ ? 243.98 mT / 2440 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 7x1.5 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the magnet - technical parameters

These values constitute the outcome of a physical simulation. Results rely on algorithms for the class Nd2Fe14B. Real-world conditions may differ from theoretical values. Use these data as a reference point during assembly planning.

Table 1: Static force (force vs distance) - power drop
MW 7x1.5 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 2438 Gs
243.8 mT
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
weak grip
1 mm 1900 Gs
190.0 mT
0.42 kg / 0.92 lbs
419.1 g / 4.1 N
weak grip
2 mm 1308 Gs
130.8 mT
0.20 kg / 0.44 lbs
198.6 g / 1.9 N
weak grip
3 mm 859 Gs
85.9 mT
0.09 kg / 0.19 lbs
85.7 g / 0.8 N
weak grip
5 mm 380 Gs
38.0 mT
0.02 kg / 0.04 lbs
16.7 g / 0.2 N
weak grip
10 mm 79 Gs
7.9 mT
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
weak grip
15 mm 27 Gs
2.7 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
weak grip
20 mm 12 Gs
1.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip
30 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip

Table 2: Sliding capacity (wall)
MW 7x1.5 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.14 kg / 0.30 lbs
138.0 g / 1.4 N
1 mm Stal (~0.2) 0.08 kg / 0.19 lbs
84.0 g / 0.8 N
2 mm Stal (~0.2) 0.04 kg / 0.09 lbs
40.0 g / 0.4 N
3 mm Stal (~0.2) 0.02 kg / 0.04 lbs
18.0 g / 0.2 N
5 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MW 7x1.5 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.21 kg / 0.46 lbs
207.0 g / 2.0 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.35 kg / 0.76 lbs
345.0 g / 3.4 N

Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 7x1.5 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
1 mm
25%
0.17 kg / 0.38 lbs
172.5 g / 1.7 N
2 mm
50%
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
3 mm
75%
0.52 kg / 1.14 lbs
517.5 g / 5.1 N
5 mm
100%
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
10 mm
100%
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
11 mm
100%
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
12 mm
100%
0.69 kg / 1.52 lbs
690.0 g / 6.8 N

Table 5: Thermal resistance (material behavior) - resistance threshold
MW 7x1.5 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.69 kg / 1.52 lbs
690.0 g / 6.8 N
OK
40 °C -2.2% 0.67 kg / 1.49 lbs
674.8 g / 6.6 N
OK
60 °C -4.4% 0.66 kg / 1.45 lbs
659.6 g / 6.5 N
80 °C -6.6% 0.64 kg / 1.42 lbs
644.5 g / 6.3 N
100 °C -28.8% 0.49 kg / 1.08 lbs
491.3 g / 4.8 N

Table 6: Two magnets (repulsion) - forces in the system
MW 7x1.5 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 1.41 kg / 3.11 lbs
4 025 Gs
0.21 kg / 0.47 lbs
212 g / 2.1 N
N/A
1 mm 1.15 kg / 2.53 lbs
4 398 Gs
0.17 kg / 0.38 lbs
172 g / 1.7 N
1.03 kg / 2.28 lbs
~0 Gs
2 mm 0.86 kg / 1.89 lbs
3 801 Gs
0.13 kg / 0.28 lbs
129 g / 1.3 N
0.77 kg / 1.70 lbs
~0 Gs
3 mm 0.60 kg / 1.33 lbs
3 185 Gs
0.09 kg / 0.20 lbs
90 g / 0.9 N
0.54 kg / 1.19 lbs
~0 Gs
5 mm 0.27 kg / 0.59 lbs
2 125 Gs
0.04 kg / 0.09 lbs
40 g / 0.4 N
0.24 kg / 0.53 lbs
~0 Gs
10 mm 0.03 kg / 0.08 lbs
759 Gs
0.01 kg / 0.01 lbs
5 g / 0.1 N
0.03 kg / 0.07 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
159 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
13 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
8 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
5 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Safety (HSE) (electronics) - warnings
MW 7x1.5 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.0 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Timepiece 20 Gs (2.0 mT) 2.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 1.5 cm
Car key 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 0.5 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Collisions (kinetic energy) - warning
MW 7x1.5 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 40.43 km/h
(11.23 m/s)
0.03 J
30 mm 69.97 km/h
(19.44 m/s)
0.08 J
50 mm 90.34 km/h
(25.09 m/s)
0.14 J
100 mm 127.75 km/h
(35.49 m/s)
0.27 J

Table 9: Coating parameters (durability)
MW 7x1.5 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MW 7x1.5 / N38

Parameter Value SI Unit / Description
Magnetic Flux 1 075 Mx 10.8 µWb
Pc Coefficient 0.31 Low (Flat)

Table 11: Underwater work (magnet fishing)
MW 7x1.5 / N38

Environment Effective steel pull Effect
Air (land) 0.69 kg Standard
Water (riverbed) 0.79 kg
(+0.10 kg buoyancy gain)
+14.5%
Rust risk: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Wall mount (shear)

*Warning: On a vertical wall, the magnet holds only approx. 20-30% of its max power.

2. Steel saturation

*Thin metal sheet (e.g. computer case) significantly weakens the holding force.

3. Temperature resistance

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.31

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010393-2026
Quick Unit Converter
Pulling force

Field Strength

Other deals

The offered product is an extremely powerful rod magnet, composed of durable NdFeB material, which, with dimensions of Ø7x1.5 mm, guarantees the highest energy density. The MW 7x1.5 / N38 component features an accuracy of ±0.1mm and industrial build quality, making it an excellent solution for professional engineers and designers. As a magnetic rod with impressive force (approx. 0.69 kg), this product is in stock from our European logistics center, ensuring lightning-fast order fulfillment. Furthermore, its triple-layer Ni-Cu-Ni coating effectively protects it against corrosion in typical operating conditions, guaranteeing an aesthetic appearance and durability for years.
This model is ideal for building generators, advanced sensors, and efficient magnetic separators, where field concentration on a small surface counts. Thanks to the pull force of 6.75 N with a weight of only 0.43 g, this rod is indispensable in electronics and wherever low weight is crucial.
Due to the brittleness of the NdFeB material, you must not use force-fitting (so-called press-fit), as this risks immediate cracking of this professional component. To ensure long-term durability in automation, specialized industrial adhesives are used, which do not react with the nickel coating and fill the gap, guaranteeing high repeatability of the connection.
Grade N38 is the most frequently chosen standard for industrial neodymium magnets, offering a great economic balance and high resistance to demagnetization. If you need even stronger magnets in the same volume (Ø7x1.5), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our warehouse.
This model is characterized by dimensions Ø7x1.5 mm, which, at a weight of 0.43 g, makes it an element with high magnetic energy density. The key parameter here is the lifting capacity amounting to approximately 0.69 kg (force ~6.75 N), which, with such defined dimensions, proves the high power of the NdFeB material. The product has a [NiCuNi] coating, which protects the surface against external factors, giving it an aesthetic, silvery shine.
Standardly, the magnetic axis runs through the center of the cylinder, causing the greatest attraction force to occur on the bases with a diameter of 7 mm. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized diametrically if your project requires it.

Advantages as well as disadvantages of neodymium magnets.

Advantages

Besides their remarkable magnetic power, neodymium magnets offer the following advantages:
  • Their strength is durable, and after approximately ten years it drops only by ~1% (theoretically),
  • Neodymium magnets remain remarkably resistant to loss of magnetic properties caused by external field sources,
  • In other words, due to the reflective layer of nickel, the element becomes visually attractive,
  • The surface of neodymium magnets generates a powerful magnetic field – this is one of their assets,
  • Neodymium magnets are characterized by very high magnetic induction on the magnet surface and are able to act (depending on the shape) even at a temperature of 230°C or more...
  • Thanks to modularity in designing and the ability to adapt to client solutions,
  • Key role in modern industrial fields – they serve a role in computer drives, electric drive systems, medical devices, as well as industrial machines.
  • Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in small dimensions, which enables their usage in miniature devices

Disadvantages

What to avoid - cons of neodymium magnets: tips and applications.
  • To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution protects the magnet and simultaneously improves its durability.
  • When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as those in rubber or plastics, which prevent oxidation and corrosion.
  • We recommend a housing - magnetic mechanism, due to difficulties in realizing nuts inside the magnet and complicated shapes.
  • Health risk to health – tiny shards of magnets can be dangerous, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Additionally, small components of these magnets are able to be problematic in diagnostics medical after entering the body.
  • With budget limitations the cost of neodymium magnets is a challenge,

Pull force analysis

Maximum magnetic pulling forcewhat it depends on?

Breakaway force was determined for ideal contact conditions, assuming:
  • on a plate made of structural steel, effectively closing the magnetic field
  • possessing a massiveness of at least 10 mm to avoid saturation
  • characterized by lack of roughness
  • without any air gap between the magnet and steel
  • under axial application of breakaway force (90-degree angle)
  • at ambient temperature room level

Determinants of practical lifting force of a magnet

During everyday use, the actual holding force depends on many variables, ranked from crucial:
  • Space between surfaces – even a fraction of a millimeter of distance (caused e.g. by veneer or unevenness) diminishes the magnet efficiency, often by half at just 0.5 mm.
  • Pull-off angle – note that the magnet has greatest strength perpendicularly. Under sliding down, the holding force drops drastically, often to levels of 20-30% of the nominal value.
  • Metal thickness – the thinner the sheet, the weaker the hold. Magnetic flux passes through the material instead of generating force.
  • Material composition – different alloys reacts the same. Alloy additives worsen the interaction with the magnet.
  • Surface finish – full contact is obtained only on smooth steel. Any scratches and bumps reduce the real contact area, reducing force.
  • Temperature – temperature increase causes a temporary drop of force. It is worth remembering the thermal limit for a given model.

Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, whereas under shearing force the load capacity is reduced by as much as 75%. Moreover, even a minimal clearance between the magnet and the plate reduces the holding force.

Safety rules for work with NdFeB magnets
Precision electronics

GPS units and mobile phones are highly sensitive to magnetic fields. Close proximity with a powerful NdFeB magnet can permanently damage the internal compass in your phone.

Crushing risk

Danger of trauma: The attraction force is so immense that it can cause hematomas, crushing, and even bone fractures. Use thick gloves.

Implant safety

People with a heart stimulator should keep an safe separation from magnets. The magnetism can interfere with the operation of the life-saving device.

Nickel coating and allergies

Certain individuals have a sensitization to Ni, which is the common plating for NdFeB magnets. Prolonged contact may cause skin redness. We recommend use protective gloves.

Powerful field

Exercise caution. Neodymium magnets attract from a distance and connect with massive power, often quicker than you can react.

Demagnetization risk

Do not overheat. Neodymium magnets are sensitive to temperature. If you need resistance above 80°C, inquire about special high-temperature series (H, SH, UH).

Eye protection

Protect your eyes. Magnets can explode upon uncontrolled impact, ejecting sharp fragments into the air. Wear goggles.

Data carriers

Equipment safety: Strong magnets can ruin payment cards and sensitive devices (heart implants, medical aids, mechanical watches).

Flammability

Fire hazard: Neodymium dust is highly flammable. Avoid machining magnets without safety gear as this may cause fire.

Product not for children

Absolutely store magnets away from children. Ingestion danger is significant, and the effects of magnets connecting inside the body are very dangerous.

Security! Need more info? Check our post: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98