MW 7x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010393
GTIN: 5906301811091
Diameter Ø [±0,1 mm]
7 mm
Height [±0,1 mm]
1.5 mm
Weight
0.43 g
Magnetization Direction
↑ axial
Load capacity
0.58 kg / 5.69 N
Magnetic Induction
243.98 mT
Coating
[NiCuNi] nickel
0.369 ZŁ with VAT / pcs + price for transport
0.300 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Pick up the phone and ask
+48 22 499 98 98
or let us know through
request form
the contact section.
Weight and structure of magnetic components can be verified using our
modular calculator.
Order by 14:00 and we’ll ship today!
MW 7x1.5 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as silver, to preserve them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior magnetism, neodymium magnets have these key benefits:
- They do not lose their power approximately 10 years – the decrease of power is only ~1% (theoretically),
- They are very resistant to demagnetization caused by external field interference,
- Thanks to the shiny finish and nickel coating, they have an aesthetic appearance,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Wide application in cutting-edge sectors – they are utilized in data storage devices, electric drives, diagnostic apparatus along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them useful in small systems
Disadvantages of magnetic elements:
- They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall resistance,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a wet environment. If exposed to rain, we recommend using sealed magnets, such as those made of non-metallic materials,
- Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
- Potential hazard related to magnet particles may arise, if ingested accidentally, which is significant in the context of child safety. It should also be noted that miniature parts from these magnets can disrupt scanning if inside the body,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Breakaway strength of the magnet in ideal conditions – what it depends on?
The given strength of the magnet corresponds to the optimal strength, determined under optimal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.
Handle with Care: Neodymium Magnets
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Magnets made of neodymium are extremely delicate, they easily fall apart as well as can crumble.
Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or a fracture.
Exercise caution!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.