UMS 20x8.6x4.5x7 / N38 - conical magnetic holder
conical magnetic holder
Catalog no 220327
GTIN: 5906301814177
Diameter Ø [±0,1 mm]
20 mm
cone dimension Ø [±0,1 mm]
8.6x4.5 mm
Height [±0,1 mm]
7 mm
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
6 kg / 58.84 N
Coating
[NiCuNi] nickel
6.46 ZŁ with VAT / pcs + price for transport
5.25 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us
+48 888 99 98 98
otherwise let us know through
inquiry form
the contact form page.
Specifications along with form of neodymium magnets can be estimated with our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
UMS 20x8.6x4.5x7 / N38 - conical magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- Their strength is durable, and after around ten years, it drops only by ~1% (according to research),
- They remain magnetized despite exposure to magnetic noise,
- By applying a shiny layer of silver, the element gains a modern look,
- They possess significant magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which expands their application range,
- Significant impact in advanced technical fields – they serve a purpose in computer drives, rotating machines, healthcare devices as well as high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which allows for use in compact constructions
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall robustness,
- They lose strength at extreme temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
- Possible threat related to magnet particles may arise, in case of ingestion, which is significant in the family environments. Additionally, small elements from these devices can hinder health screening once in the system,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Detachment force of the magnet in optimal conditions – what it depends on?
The given lifting capacity of the magnet represents the maximum lifting force, determined in ideal conditions, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, in contrast under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate decreases the holding force.
Exercise Caution with Neodymium Magnets
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets made of neodymium are highly susceptible to damage, resulting in their cracking.
Neodymium magnets are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.
If you have a finger between or on the path of attracting magnets, there may be a severe cut or a fracture.
Be careful!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.
