e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. All magnesy on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are perfect for use in difficult weather, including snow and rain more...

magnetic holders

Holders with magnets can be used to enhance production, underwater exploration, or locating meteors from gold see more...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMS 20x8.6x4.5x7 / N38 - conical magnetic holder

conical magnetic holder

Catalog no 220327

GTIN: 5906301814177

5

Diameter Ø [±0,1 mm]

20 mm

cone dimension Ø [±0,1 mm]

8.6x4.5 mm

Height [±0,1 mm]

7 mm

Weight

12 g

Magnetization Direction

↑ axial

Load capacity

6 kg / 58.84 N

Coating

[NiCuNi] nickel

6.46 with VAT / pcs + price for transport

5.25 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.25 ZŁ
6.46 ZŁ
price from 100 pcs
4.46 ZŁ
5.49 ZŁ
price from 200 pcs
3.41 ZŁ
4.20 ZŁ

Need help making a decision?

Pick up the phone and ask +48 888 99 98 98 alternatively let us know using form our website.
Force along with shape of neodymium magnets can be analyzed using our power calculator.

Same-day processing for orders placed before 14:00.

UMS 20x8.6x4.5x7 / N38 - conical magnetic holder

Specification/characteristics UMS 20x8.6x4.5x7 / N38 - conical magnetic holder
properties
values
Cat. no.
220327
GTIN
5906301814177
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
cone dimension Ø
8.6x4.5 mm [±0,1 mm]
Height
7 mm [±0,1 mm]
Weight
12 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
6 kg / 58.84 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (based on calculations),
  • They show strong resistance to demagnetization from external magnetic fields,
  • In other words, due to the shiny nickel coating, the magnet obtains an stylish appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
  • Key role in modern technologies – they are used in computer drives, electromechanical systems, medical equipment and high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall strength,
  • They lose strength at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the health of young users. Furthermore, small elements from these products may disrupt scanning after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what affects it?

The given holding capacity of the magnet corresponds to the highest holding force, calculated in ideal conditions, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Lifting capacity in practice – influencing factors

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Magnets made of neodymium are especially delicate, which leads to shattering.

Neodymium magnets are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Neodymium magnets should not be around children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Warning!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98