tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to purchase powerful magnet? Magnetic holders in solid and airtight steel casing are perfect for use in variable and difficult climate conditions, including in the rain and snow check...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater exploration, or locating meteors from gold read...

Shipping is always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

AM lina fi 10 mm - magnetic accessories

magnetic accessories

Catalog no 080216

GTIN: 5906301812456

5

Weight

32 g

Load capacity

1592 kg / 15612.19 N

1.476 with VAT / pcs + price for transport

1.200 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.200 ZŁ
1.476 ZŁ
price from 500 pcs
1.140 ZŁ
1.402 ZŁ
price from 1000 pcs
1.080 ZŁ
1.328 ZŁ

Not sure about your choice?

Call us +48 888 99 98 98 otherwise let us know by means of form our website.
Lifting power as well as structure of neodymium magnets can be verified using our power calculator.

Orders submitted before 14:00 will be dispatched today!

AM lina fi 10 mm - magnetic accessories

Specification/characteristics AM lina fi 10 mm - magnetic accessories
properties
values
Cat. no.
080216
GTIN
5906301812456
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
32 g [±0,1 mm]
Load capacity ~ ?
1592 kg / 15612.19 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

As an example, magnetic mounts are used in workshops to hold tools, while magnetic separators help in removing small iron particles from material flows in recovery or production. NeoCube balls, consisting of small neodymium elements, are popular as brain games or anti-stress toys, enhancing imagination and manual skills.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous strength, neodymium magnets offer the following advantages:

  • Their power is durable, and after around 10 years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by external magnetic influence very well,
  • In other words, due to the shiny silver coating, the magnet obtains an professional appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
  • Significant impact in advanced technical fields – they are used in hard drives, electric motors, healthcare devices along with technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall robustness,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
  • Limited ability to create precision features in the magnet – the use of a housing is recommended,
  • Safety concern related to magnet particles may arise, in case of ingestion, which is notable in the protection of children. It should also be noted that minuscule fragments from these products can interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum lifting capacity of the magnetwhat contributes to it?

The given strength of the magnet means the optimal strength, calculated under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Impact of factors on magnetic holding capacity in practice

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Handle with Care: Neodymium Magnets

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are extremely delicate, they easily crack and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets may crack or crumble with uncontrolled connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98