e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are available for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for searching F300 GOLD

Where to buy strong magnet? Holders with magnets in airtight and durable steel casing are ideally suited for use in challenging climate conditions, including during rain and snow check...

magnetic holders

Magnetic holders can be applied to facilitate production, underwater exploration, or finding space rocks made of ore more...

Enjoy shipping of your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

AM lina fi 10 mm - magnetic accessories

magnetic accessories

Catalog no 080216

GTIN: 5906301812456

5

Weight

32 g

Load capacity

1592 kg / 15612.19 N

1.48 with VAT / pcs + price for transport

1.20 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.20 ZŁ
1.48 ZŁ
price from 500 pcs
1.14 ZŁ
1.40 ZŁ
price from 1000 pcs
1.08 ZŁ
1.33 ZŁ

Want to talk magnets?

Contact us by phone +48 22 499 98 98 or let us know using form through our site.
Lifting power and shape of magnetic components can be checked on our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

AM lina fi 10 mm - magnetic accessories

Specification/characteristics AM lina fi 10 mm - magnetic accessories
properties
values
Cat. no.
080216
GTIN
5906301812456
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
32 g [±0,1 mm]
Load capacity ~ ?
1592 kg / 15612.19 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The benefits of magnetic components cover high strength, thanks to strong materials, and versatility, allowing their use in diverse environments.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous field intensity, neodymium magnets offer the following advantages:

  • They do not lose their power approximately 10 years – the decrease of lifting capacity is only ~1% (theoretically),
  • They show strong resistance to demagnetization from external field exposure,
  • Thanks to the shiny finish and nickel coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their application range,
  • Significant impact in cutting-edge sectors – they are used in data storage devices, rotating machines, diagnostic apparatus and technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall durability,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
  • Safety concern linked to microscopic shards may arise, when consumed by mistake, which is significant in the family environments. Moreover, small elements from these assemblies can disrupt scanning if inside the body,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Maximum lifting capacity of the magnetwhat contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, determined under optimal conditions, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • at room temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, whereas under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Safety Precautions

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Magnets made of neodymium are incredibly delicate, they easily fall apart as well as can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Warning!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98