AM lina fi 10 mm - magnetic accessories
magnetic accessories
Catalog no 080216
GTIN: 5906301812456
Weight
32 g
Load capacity
1592 kg / 15612.19 N
1.476 ZŁ with VAT / pcs + price for transport
1.200 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Call us now
+48 22 499 98 98
or drop us a message via
our online form
through our site.
Specifications along with structure of magnetic components can be estimated with our
modular calculator.
Same-day shipping for orders placed before 14:00.
AM lina fi 10 mm - magnetic accessories
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense strength, neodymium magnets offer the following advantages:
- They retain their magnetic properties for nearly ten years – the loss is just ~1% (according to analyses),
- They show strong resistance to demagnetization from external field exposure,
- The use of a polished gold surface provides a smooth finish,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- The ability for custom shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Important function in advanced technical fields – they serve a purpose in hard drives, rotating machines, healthcare devices along with high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them useful in small systems
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall durability,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
- Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
- Possible threat related to magnet particles may arise, if ingested accidentally, which is significant in the context of child safety. Additionally, miniature parts from these assemblies have the potential to hinder health screening once in the system,
- Due to the price of neodymium, their cost is relatively high,
Highest magnetic holding force – what it depends on?
The given lifting capacity of the magnet represents the maximum lifting force, assessed in ideal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a refined outer layer
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. In addition, even a small distance {between} the magnet and the plate decreases the holding force.
Safety Precautions
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
If the joining of neodymium magnets is not controlled, then they may crumble and crack. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets are characterized by their fragility, which can cause them to become damaged.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets away from children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Caution!
To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.
