AM lina fi 10 mm - magnetic accessories
magnetic accessories
Catalog no 080216
GTIN: 5906301812456
Weight
32 g
Load capacity
1592 kg / 15612.19 N
1.476 ZŁ with VAT / pcs + price for transport
1.200 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 888 99 98 98
alternatively let us know using
form
through our site.
Force and structure of magnetic components can be analyzed with our
power calculator.
Orders submitted before 14:00 will be dispatched today!
AM lina fi 10 mm - magnetic accessories
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable field intensity, neodymium magnets offer the following advantages:
- They retain their attractive force for nearly 10 years – the loss is just ~1% (according to analyses),
- They are very resistant to demagnetization caused by external field interference,
- Because of the reflective layer of silver, the component looks high-end,
- The outer field strength of the magnet shows elevated magnetic properties,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
- Wide application in new technology industries – they are used in computer drives, electric drives, medical equipment along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in miniature devices
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall resistance,
- They lose strength at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment. If exposed to rain, we recommend using sealed magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
- Safety concern linked to microscopic shards may arise, if ingested accidentally, which is important in the protection of children. Furthermore, miniature parts from these magnets can complicate medical imaging when ingested,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Maximum holding power of the magnet – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, measured in ideal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate reduces the load capacity.
Handle Neodymium Magnets with Caution
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Keep neodymium magnets away from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets bounce and also touch each other mutually within a distance of several to almost 10 cm from each other.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are highly susceptible to damage, resulting in their cracking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
