MW 18x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010401
GTIN/EAN: 5906301811107
Diameter Ø
18 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
19.09 g
Magnetization Direction
↑ axial
Load capacity
10.76 kg / 105.51 N
Magnetic Induction
460.54 mT / 4605 Gs
Coating
[NiCuNi] Nickel
7.82 ZŁ with VAT / pcs + price for transport
6.36 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
otherwise get in touch using
form
the contact form page.
Parameters along with form of neodymium magnets can be analyzed with our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical specification - MW 18x10 / N38 - cylindrical magnet
Specification / characteristics - MW 18x10 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010401 |
| GTIN/EAN | 5906301811107 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 18 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 19.09 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 10.76 kg / 105.51 N |
| Magnetic Induction ~ ? | 460.54 mT / 4605 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the magnet - technical parameters
Presented data constitute the outcome of a physical simulation. Results are based on models for the material Nd2Fe14B. Actual conditions may deviate from the simulation results. Please consider these data as a preliminary roadmap for designers.
Table 1: Static force (force vs distance) - characteristics
MW 18x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4604 Gs
460.4 mT
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
critical level |
| 1 mm |
4114 Gs
411.4 mT
|
8.59 kg / 18.94 lbs
8592.4 g / 84.3 N
|
medium risk |
| 2 mm |
3615 Gs
361.5 mT
|
6.64 kg / 14.63 lbs
6635.0 g / 65.1 N
|
medium risk |
| 3 mm |
3137 Gs
313.7 mT
|
5.00 kg / 11.01 lbs
4996.2 g / 49.0 N
|
medium risk |
| 5 mm |
2305 Gs
230.5 mT
|
2.70 kg / 5.95 lbs
2698.6 g / 26.5 N
|
medium risk |
| 10 mm |
1045 Gs
104.5 mT
|
0.55 kg / 1.22 lbs
555.0 g / 5.4 N
|
low risk |
| 15 mm |
517 Gs
51.7 mT
|
0.14 kg / 0.30 lbs
135.7 g / 1.3 N
|
low risk |
| 20 mm |
285 Gs
28.5 mT
|
0.04 kg / 0.09 lbs
41.1 g / 0.4 N
|
low risk |
| 30 mm |
110 Gs
11.0 mT
|
0.01 kg / 0.01 lbs
6.2 g / 0.1 N
|
low risk |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
low risk |
Table 2: Sliding capacity (wall)
MW 18x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.15 kg / 4.74 lbs
2152.0 g / 21.1 N
|
| 1 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1718.0 g / 16.9 N
|
| 2 mm | Stal (~0.2) |
1.33 kg / 2.93 lbs
1328.0 g / 13.0 N
|
| 3 mm | Stal (~0.2) |
1.00 kg / 2.20 lbs
1000.0 g / 9.8 N
|
| 5 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
540.0 g / 5.3 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 18x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.15 kg / 4.74 lbs
2152.0 g / 21.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.08 kg / 2.37 lbs
1076.0 g / 10.6 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
5.38 kg / 11.86 lbs
5380.0 g / 52.8 N
|
Table 4: Material efficiency (saturation) - power losses
MW 18x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 1.19 lbs
538.0 g / 5.3 N
|
| 1 mm |
|
1.35 kg / 2.97 lbs
1345.0 g / 13.2 N
|
| 2 mm |
|
2.69 kg / 5.93 lbs
2690.0 g / 26.4 N
|
| 3 mm |
|
4.04 kg / 8.90 lbs
4035.0 g / 39.6 N
|
| 5 mm |
|
6.73 kg / 14.83 lbs
6725.0 g / 66.0 N
|
| 10 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
| 11 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
| 12 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 18x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
OK |
| 40 °C | -2.2% |
10.52 kg / 23.20 lbs
10523.3 g / 103.2 N
|
OK |
| 60 °C | -4.4% |
10.29 kg / 22.68 lbs
10286.6 g / 100.9 N
|
OK |
| 80 °C | -6.6% |
10.05 kg / 22.16 lbs
10049.8 g / 98.6 N
|
|
| 100 °C | -28.8% |
7.66 kg / 16.89 lbs
7661.1 g / 75.2 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MW 18x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
33.25 kg / 73.30 lbs
5 648 Gs
|
4.99 kg / 10.99 lbs
4987 g / 48.9 N
|
N/A |
| 1 mm |
29.87 kg / 65.85 lbs
8 727 Gs
|
4.48 kg / 9.88 lbs
4480 g / 44.0 N
|
26.88 kg / 59.27 lbs
~0 Gs
|
| 2 mm |
26.55 kg / 58.53 lbs
8 228 Gs
|
3.98 kg / 8.78 lbs
3983 g / 39.1 N
|
23.90 kg / 52.68 lbs
~0 Gs
|
| 3 mm |
23.41 kg / 51.62 lbs
7 727 Gs
|
3.51 kg / 7.74 lbs
3512 g / 34.5 N
|
21.07 kg / 46.46 lbs
~0 Gs
|
| 5 mm |
17.84 kg / 39.33 lbs
6 744 Gs
|
2.68 kg / 5.90 lbs
2676 g / 26.3 N
|
16.06 kg / 35.40 lbs
~0 Gs
|
| 10 mm |
8.34 kg / 18.38 lbs
4 611 Gs
|
1.25 kg / 2.76 lbs
1251 g / 12.3 N
|
7.50 kg / 16.54 lbs
~0 Gs
|
| 20 mm |
1.71 kg / 3.78 lbs
2 091 Gs
|
0.26 kg / 0.57 lbs
257 g / 2.5 N
|
1.54 kg / 3.40 lbs
~0 Gs
|
| 50 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
221 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
106 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
78 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - warnings
MW 18x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 9.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 7.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 6.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 4.5 cm |
| Car key | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MW 18x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
24.70 km/h
(6.86 m/s)
|
0.45 J | |
| 30 mm |
41.49 km/h
(11.52 m/s)
|
1.27 J | |
| 50 mm |
53.54 km/h
(14.87 m/s)
|
2.11 J | |
| 100 mm |
75.72 km/h
(21.03 m/s)
|
4.22 J |
Table 9: Anti-corrosion coating durability
MW 18x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 18x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 11 828 Mx | 118.3 µWb |
| Pc Coefficient | 0.63 | High (Stable) |
Table 11: Submerged application
MW 18x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 10.76 kg | Standard |
| Water (riverbed) |
12.32 kg
(+1.56 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical surface, the magnet holds only a fraction of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. 0.5mm PC case) severely reduces the holding force.
3. Heat tolerance
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.63
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Advantages as well as disadvantages of rare earth magnets.
Benefits
- They virtually do not lose power, because even after ten years the decline in efficiency is only ~1% (based on calculations),
- They are extremely resistant to demagnetization induced by presence of other magnetic fields,
- Thanks to the smooth finish, the coating of nickel, gold-plated, or silver-plated gives an elegant appearance,
- Magnets are distinguished by excellent magnetic induction on the active area,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Thanks to modularity in forming and the capacity to adapt to unusual requirements,
- Versatile presence in electronics industry – they find application in data components, electric motors, diagnostic systems, as well as modern systems.
- Thanks to their power density, small magnets offer high operating force, with minimal size,
Cons
- At very strong impacts they can break, therefore we recommend placing them in strong housings. A metal housing provides additional protection against damage and increases the magnet's durability.
- We warn that neodymium magnets can lose their power at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material stable to moisture, when using outdoors
- Due to limitations in producing threads and complex forms in magnets, we recommend using cover - magnetic mechanism.
- Possible danger resulting from small fragments of magnets are risky, when accidentally swallowed, which becomes key in the context of child safety. Furthermore, small elements of these devices can be problematic in diagnostics medical after entering the body.
- With large orders the cost of neodymium magnets is economically unviable,
Holding force characteristics
Maximum lifting capacity of the magnet – what affects it?
- on a block made of mild steel, effectively closing the magnetic flux
- with a cross-section of at least 10 mm
- with a plane free of scratches
- with total lack of distance (no coatings)
- for force applied at a right angle (pull-off, not shear)
- at ambient temperature approx. 20 degrees Celsius
Key elements affecting lifting force
- Distance – existence of foreign body (rust, tape, gap) acts as an insulator, which reduces power steeply (even by 50% at 0.5 mm).
- Force direction – declared lifting capacity refers to detachment vertically. When attempting to slide, the magnet exhibits much less (often approx. 20-30% of nominal force).
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Steel grade – the best choice is pure iron steel. Stainless steels may attract less.
- Surface condition – smooth surfaces ensure maximum contact, which improves field saturation. Uneven metal weaken the grip.
- Thermal environment – heating the magnet results in weakening of induction. It is worth remembering the thermal limit for a given model.
Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance between the magnet’s surface and the plate decreases the holding force.
Precautions when working with neodymium magnets
Do not drill into magnets
Fire hazard: Neodymium dust is explosive. Avoid machining magnets in home conditions as this may cause fire.
Metal Allergy
Allergy Notice: The Ni-Cu-Ni coating consists of nickel. If an allergic reaction appears, immediately stop working with magnets and use protective gear.
Magnets are brittle
Beware of splinters. Magnets can explode upon violent connection, ejecting shards into the air. Wear goggles.
Thermal limits
Do not overheat. Neodymium magnets are susceptible to heat. If you require operation above 80°C, inquire about special high-temperature series (H, SH, UH).
Threat to navigation
GPS units and smartphones are extremely susceptible to magnetic fields. Direct contact with a strong magnet can permanently damage the sensors in your phone.
Conscious usage
Be careful. Neodymium magnets attract from a long distance and snap with huge force, often faster than you can react.
Pacemakers
Warning for patients: Strong magnetic fields affect electronics. Keep minimum 30 cm distance or ask another person to work with the magnets.
No play value
NdFeB magnets are not intended for children. Eating several magnets can lead to them connecting inside the digestive tract, which constitutes a severe health hazard and requires urgent medical intervention.
Safe distance
Powerful magnetic fields can destroy records on payment cards, hard drives, and storage devices. Keep a distance of min. 10 cm.
Pinching danger
Big blocks can crush fingers instantly. Never place your hand betwixt two strong magnets.
