tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are ideally suited for use in challenging weather, including during snow and rain more information...

magnets with holders

Magnetic holders can be used to facilitate manufacturing, exploring underwater areas, or finding meteorites made of ore see more...

Order is always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 18x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010401

GTIN: 5906301811107

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

10 mm

Weight

19.09 g

Magnetization Direction

↑ axial

Load capacity

9.95 kg / 97.58 N

Magnetic Induction

460.54 mT

Coating

[NiCuNi] nickel

7.82 with VAT / pcs + price for transport

6.36 ZŁ net + 23% VAT / pcs

5.69 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
6.36 ZŁ
7.82 ZŁ
price from 95 pcs
5.98 ZŁ
7.35 ZŁ
price from 394 pcs
5.60 ZŁ
6.88 ZŁ

Not sure about your choice?

Pick up the phone and ask +48 22 499 98 98 alternatively drop us a message by means of request form the contact page.
Parameters along with shape of neodymium magnets can be tested on our modular calculator.

Orders submitted before 14:00 will be dispatched today!

MW 18x10 / N38 - cylindrical magnet

Specification/characteristics MW 18x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010401
GTIN
5906301811107
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
19.09 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
9.95 kg / 97.58 N
Magnetic Induction ~ ?
460.54 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 18x10 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform traditional ferrite magnets. Thanks to their power, they are frequently employed in products that need strong adhesion. The standard temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 18x10 / N38 with a magnetic strength 9.95 kg weighs only 19.09 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the latest information and promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very practical in many applications, they can also constitute certain risk. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin or other surfaces, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as epoxy, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A neodymium magnet in classes N52 and N50 is a powerful and strong magnetic product with the shape of a cylinder, that provides strong holding power and universal application. Competitive price, 24h delivery, stability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetism, neodymium magnets have these key benefits:

  • They have stable power, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • They are highly resistant to demagnetization caused by external magnetic sources,
  • In other words, due to the metallic gold coating, the magnet obtains an professional appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Wide application in modern technologies – they are utilized in computer drives, electromechanical systems, healthcare devices along with technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time enhances its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to moisture can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
  • Safety concern related to magnet particles may arise, especially if swallowed, which is important in the context of child safety. Moreover, small elements from these devices may interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Exercise Caution with Neodymium Magnets

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are especially delicate, resulting in shattering.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Pay attention!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98