tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy strong neodymium magnet? Holders with magnets in solid and airtight steel casing are excellent for use in variable and difficult weather conditions, including in the rain and snow see more...

magnetic holders

Holders with magnets can be applied to enhance production, exploring underwater areas, or searching for meteorites from gold read...

Enjoy shipping of your order on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 70x60 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010098

GTIN: 5906301810971

5

Diameter Ø [±0,1 mm]

70 mm

Height [±0,1 mm]

60 mm

Weight

1731.8 g

Magnetization Direction

↑ axial

Load capacity

232.23 kg / 2277.4 N

Magnetic Induction

535.45 mT

Coating

[NiCuNi] nickel

630.01 with VAT / pcs + price for transport

512.20 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
512.20 ZŁ
630.01 ZŁ
price from 5 pcs
445.61 ZŁ
548.10 ZŁ

Looking for a better price?

Call us now +48 888 99 98 98 if you prefer contact us using form through our site.
Weight along with appearance of neodymium magnets can be checked on our force calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 70x60 / N38 - cylindrical magnet

Specification/characteristics MW 70x60 / N38 - cylindrical magnet
properties
values
Cat. no.
010098
GTIN
5906301810971
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
70 mm [±0,1 mm]
Height
60 mm [±0,1 mm]
Weight
1731.8 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
232.23 kg / 2277.4 N
Magnetic Induction ~ ?
535.45 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 70x60 / N38 are magnets made of neodymium in a cylinder form. They are known for their very strong magnetic properties, which outperform traditional ferrite magnets. Thanks to their strength, they are frequently used in products that need powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet with the designation MW 70x60 / N38 with a magnetic strength 232.23 kg weighs only 1731.8 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in various applications, they can also pose certain dangers. Because of their significant magnetic power, they can attract metallic objects with great force, which can lead to crushing skin or other surfaces, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then forming and heat treating. Their unmatched magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as silver, to protect them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A neodymium magnet in classes N50 and N52 is a strong and extremely powerful magnetic piece shaped like a cylinder, providing high force and universal applicability. Competitive price, 24h delivery, resistance and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • Their strength remains stable, and after approximately 10 years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by surrounding magnetic fields very well,
  • Because of the brilliant layer of nickel, the component looks high-end,
  • Magnetic induction on the surface of these magnets is very strong,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which increases their usage potential,
  • Important function in advanced technical fields – they serve a purpose in computer drives, electric motors, diagnostic apparatus and other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also reinforces its overall strength,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a wet environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is important in the context of child safety. Furthermore, minuscule fragments from these magnets can complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given holding capacity of the magnet represents the highest holding force, measured in ideal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under shearing force the load capacity is reduced by as much as 75%. Moreover, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Safety Precautions

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

 Keep neodymium magnets far from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Magnets made of neodymium are noted for their fragility, which can cause them to crumble.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98