MW 70x60 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010098
GTIN: 5906301810971
Diameter Ø [±0,1 mm]
70 mm
Height [±0,1 mm]
60 mm
Weight
1731.8 g
Magnetization Direction
↑ axial
Load capacity
232.23 kg / 2277.4 N
Magnetic Induction
535.45 mT
Coating
[NiCuNi] nickel
630.01 ZŁ with VAT / pcs + price for transport
512.20 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us now
+48 888 99 98 98
if you prefer contact us using
form
through our site.
Weight along with appearance of neodymium magnets can be checked on our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 70x60 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as silver, to protect them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:
- Their strength remains stable, and after approximately 10 years, it drops only by ~1% (according to research),
- They protect against demagnetization induced by surrounding magnetic fields very well,
- Because of the brilliant layer of nickel, the component looks high-end,
- Magnetic induction on the surface of these magnets is very strong,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which increases their usage potential,
- Important function in advanced technical fields – they serve a purpose in computer drives, electric motors, diagnostic apparatus and other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also reinforces its overall strength,
- They lose magnetic force at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of polymer,
- Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
- Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is important in the context of child safety. Furthermore, minuscule fragments from these magnets can complicate medical imaging once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Detachment force of the magnet in optimal conditions – what affects it?
The given holding capacity of the magnet represents the highest holding force, measured in ideal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under shearing force the load capacity is reduced by as much as 75%. Moreover, even a slight gap {between} the magnet and the plate lowers the lifting capacity.
Safety Precautions
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Keep neodymium magnets far from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Magnets made of neodymium are noted for their fragility, which can cause them to crumble.
Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Warning!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.