Neodymium magnets – most powerful on the market

Looking for massive power in small size? We have in stock rich assortment of disc, cylindrical and ring magnets. Perfect for for domestic applications, workshop and industrial tasks. Check our offer in stock.

check magnet catalog

Magnet fishing: strong F200/F400 sets

Start your adventure related to seabed exploration! Our specialized grips (F200, F400) provide safety guarantee and huge lifting capacity. Stainless steel construction and reinforced ropes will perform in any water.

find searching equipment

Reliable threaded grips

Professional solutions for mounting without drilling. Threaded grips (external or internal) provide quick improvement of work on production halls. They are indispensable installing lighting, detectors and banners.

check technical specs

🚚 Order by 14:00 – we'll ship same day!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 7x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010099

GTIN/EAN: 5906301810988

5.00

Diameter Ø

7 mm [±0,1 mm]

Height

2 mm [±0,1 mm]

Weight

0.58 g

Magnetization Direction

↑ axial

Load capacity

0.99 kg / 9.76 N

Magnetic Induction

307.23 mT / 3072 Gs

Coating

[NiCuNi] Nickel

0.381 with VAT / pcs + price for transport

0.310 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.310 ZŁ
0.381 ZŁ
price from 2100 pcs
0.279 ZŁ
0.343 ZŁ
price from 3000 pcs
0.273 ZŁ
0.336 ZŁ
Not sure where to buy?

Call us +48 888 99 98 98 alternatively send us a note by means of contact form our website.
Strength along with structure of a magnet can be checked using our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

Detailed specification - MW 7x2 / N38 - cylindrical magnet

Specification / characteristics - MW 7x2 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010099
GTIN/EAN 5906301810988
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 7 mm [±0,1 mm]
Height 2 mm [±0,1 mm]
Weight 0.58 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.99 kg / 9.76 N
Magnetic Induction ~ ? 307.23 mT / 3072 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 7x2 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Technical modeling of the magnet - technical parameters

These information constitute the outcome of a mathematical analysis. Results are based on algorithms for the material Nd2Fe14B. Actual conditions may differ. Please consider these data as a supplementary guide when designing systems.

Table 1: Static force (force vs distance) - characteristics
MW 7x2 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3070 Gs
307.0 mT
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
weak grip
1 mm 2332 Gs
233.2 mT
0.57 kg / 1.26 lbs
571.1 g / 5.6 N
weak grip
2 mm 1590 Gs
159.0 mT
0.27 kg / 0.59 lbs
265.5 g / 2.6 N
weak grip
3 mm 1044 Gs
104.4 mT
0.11 kg / 0.25 lbs
114.6 g / 1.1 N
weak grip
5 mm 466 Gs
46.6 mT
0.02 kg / 0.05 lbs
22.8 g / 0.2 N
weak grip
10 mm 100 Gs
10.0 mT
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
weak grip
15 mm 35 Gs
3.5 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
weak grip
20 mm 16 Gs
1.6 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip

Table 2: Slippage force (vertical surface)
MW 7x2 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.20 kg / 0.44 lbs
198.0 g / 1.9 N
1 mm Stal (~0.2) 0.11 kg / 0.25 lbs
114.0 g / 1.1 N
2 mm Stal (~0.2) 0.05 kg / 0.12 lbs
54.0 g / 0.5 N
3 mm Stal (~0.2) 0.02 kg / 0.05 lbs
22.0 g / 0.2 N
5 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - vertical pull
MW 7x2 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.30 kg / 0.65 lbs
297.0 g / 2.9 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.20 kg / 0.44 lbs
198.0 g / 1.9 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.10 kg / 0.22 lbs
99.0 g / 1.0 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.50 kg / 1.09 lbs
495.0 g / 4.9 N

Table 4: Material efficiency (saturation) - power losses
MW 7x2 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.10 kg / 0.22 lbs
99.0 g / 1.0 N
1 mm
25%
0.25 kg / 0.55 lbs
247.5 g / 2.4 N
2 mm
50%
0.50 kg / 1.09 lbs
495.0 g / 4.9 N
3 mm
75%
0.74 kg / 1.64 lbs
742.5 g / 7.3 N
5 mm
100%
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
10 mm
100%
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
11 mm
100%
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
12 mm
100%
0.99 kg / 2.18 lbs
990.0 g / 9.7 N

Table 5: Thermal stability (material behavior) - power drop
MW 7x2 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.99 kg / 2.18 lbs
990.0 g / 9.7 N
OK
40 °C -2.2% 0.97 kg / 2.13 lbs
968.2 g / 9.5 N
OK
60 °C -4.4% 0.95 kg / 2.09 lbs
946.4 g / 9.3 N
80 °C -6.6% 0.92 kg / 2.04 lbs
924.7 g / 9.1 N
100 °C -28.8% 0.70 kg / 1.55 lbs
704.9 g / 6.9 N

Table 6: Magnet-Magnet interaction (repulsion) - field collision
MW 7x2 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.24 kg / 4.93 lbs
4 653 Gs
0.34 kg / 0.74 lbs
335 g / 3.3 N
N/A
1 mm 1.76 kg / 3.89 lbs
5 454 Gs
0.26 kg / 0.58 lbs
265 g / 2.6 N
1.59 kg / 3.50 lbs
~0 Gs
2 mm 1.29 kg / 2.84 lbs
4 663 Gs
0.19 kg / 0.43 lbs
193 g / 1.9 N
1.16 kg / 2.56 lbs
~0 Gs
3 mm 0.89 kg / 1.97 lbs
3 884 Gs
0.13 kg / 0.30 lbs
134 g / 1.3 N
0.81 kg / 1.77 lbs
~0 Gs
5 mm 0.40 kg / 0.87 lbs
2 581 Gs
0.06 kg / 0.13 lbs
59 g / 0.6 N
0.36 kg / 0.78 lbs
~0 Gs
10 mm 0.05 kg / 0.11 lbs
932 Gs
0.01 kg / 0.02 lbs
8 g / 0.1 N
0.05 kg / 0.10 lbs
~0 Gs
20 mm 0.00 kg / 0.01 lbs
200 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
17 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Hazards (implants) - precautionary measures
MW 7x2 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.5 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Mechanical watch 20 Gs (2.0 mT) 2.0 cm
Mobile device 40 Gs (4.0 mT) 1.5 cm
Car key 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Dynamics (cracking risk) - warning
MW 7x2 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 41.69 km/h
(11.58 m/s)
0.04 J
30 mm 72.17 km/h
(20.05 m/s)
0.12 J
50 mm 93.17 km/h
(25.88 m/s)
0.19 J
100 mm 131.76 km/h
(36.60 m/s)
0.39 J

Table 9: Corrosion resistance
MW 7x2 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MW 7x2 / N38

Parameter Value SI Unit / Description
Magnetic Flux 1 284 Mx 12.8 µWb
Pc Coefficient 0.39 Low (Flat)

Table 11: Hydrostatics and buoyancy
MW 7x2 / N38

Environment Effective steel pull Effect
Air (land) 0.99 kg Standard
Water (riverbed) 1.13 kg
(+0.14 kg buoyancy gain)
+14.5%
Rust risk: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Sliding resistance

*Warning: On a vertical wall, the magnet retains only ~20% of its perpendicular strength.

2. Steel saturation

*Thin steel (e.g. computer case) severely reduces the holding force.

3. Power loss vs temp

*For standard magnets, the critical limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.39

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010099-2026
Measurement Calculator
Magnet pull force

Field Strength

Other proposals

This product is a very strong cylinder magnet, composed of advanced NdFeB material, which, with dimensions of Ø7x2 mm, guarantees optimal power. The MW 7x2 / N38 component is characterized by a tolerance of ±0.1mm and industrial build quality, making it an excellent solution for the most demanding engineers and designers. As a cylindrical magnet with impressive force (approx. 0.99 kg), this product is in stock from our warehouse in Poland, ensuring lightning-fast order fulfillment. Furthermore, its triple-layer Ni-Cu-Ni coating shields it against corrosion in standard operating conditions, guaranteeing an aesthetic appearance and durability for years.
This model is created for building generators, advanced Hall effect sensors, and efficient filters, where maximum induction on a small surface counts. Thanks to the high power of 9.76 N with a weight of only 0.58 g, this rod is indispensable in electronics and wherever low weight is crucial.
Since our magnets have a tolerance of ±0.1mm, the recommended way is to glue them into holes with a slightly larger diameter (e.g., 7.1 mm) using epoxy glues. To ensure long-term durability in automation, anaerobic resins are used, which are safe for nickel and fill the gap, guaranteeing high repeatability of the connection.
Magnets NdFeB grade N38 are suitable for 90% of applications in automation and machine building, where excessive miniaturization with maximum force is not required. If you need even stronger magnets in the same volume (Ø7x2), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our warehouse.
The presented product is a neodymium magnet with precisely defined parameters: diameter 7 mm and height 2 mm. The value of 9.76 N means that the magnet is capable of holding a weight many times exceeding its own mass of 0.58 g. The product has a [NiCuNi] coating, which secures it against oxidation, giving it an aesthetic, silvery shine.
This cylinder is magnetized axially (along the height of 2 mm), which means that the N and S poles are located on the flat, circular surfaces. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized through the diameter if your project requires it.

Advantages and disadvantages of rare earth magnets.

Strengths

Apart from their notable magnetism, neodymium magnets have these key benefits:
  • They retain full power for nearly ten years – the loss is just ~1% (in theory),
  • They do not lose their magnetic properties even under external field action,
  • In other words, due to the metallic finish of silver, the element looks attractive,
  • The surface of neodymium magnets generates a strong magnetic field – this is one of their assets,
  • Through (appropriate) combination of ingredients, they can achieve high thermal resistance, allowing for action at temperatures approaching 230°C and above...
  • Thanks to freedom in constructing and the capacity to customize to individual projects,
  • Key role in modern industrial fields – they are utilized in HDD drives, drive modules, medical devices, as well as technologically advanced constructions.
  • Relatively small size with high pulling force – neodymium magnets offer high power in tiny dimensions, which allows their use in miniature devices

Limitations

Disadvantages of NdFeB magnets:
  • At strong impacts they can crack, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
  • Neodymium magnets decrease their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
  • They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
  • We recommend casing - magnetic holder, due to difficulties in creating threads inside the magnet and complicated shapes.
  • Health risk to health – tiny shards of magnets pose a threat, in case of ingestion, which gains importance in the aspect of protecting the youngest. Additionally, small components of these magnets can be problematic in diagnostics medical when they are in the body.
  • With mass production the cost of neodymium magnets is a challenge,

Pull force analysis

Magnetic strength at its maximum – what it depends on?

Information about lifting capacity is the result of a measurement for optimal configuration, including:
  • on a block made of structural steel, perfectly concentrating the magnetic field
  • with a thickness minimum 10 mm
  • with an polished touching surface
  • with direct contact (no paint)
  • during detachment in a direction vertical to the plane
  • at standard ambient temperature

Magnet lifting force in use – key factors

In practice, the actual lifting capacity depends on several key aspects, presented from crucial:
  • Gap between surfaces – even a fraction of a millimeter of separation (caused e.g. by veneer or dirt) significantly weakens the pulling force, often by half at just 0.5 mm.
  • Angle of force application – highest force is reached only during perpendicular pulling. The force required to slide of the magnet along the surface is typically many times smaller (approx. 1/5 of the lifting capacity).
  • Element thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet limits the lifting capacity (the magnet "punches through" it).
  • Material composition – not every steel reacts the same. Alloy additives weaken the attraction effect.
  • Surface finish – ideal contact is obtained only on smooth steel. Any scratches and bumps create air cushions, weakening the magnet.
  • Temperature influence – high temperature reduces magnetic field. Too high temperature can permanently demagnetize the magnet.

Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as 75%. Moreover, even a slight gap between the magnet’s surface and the plate decreases the load capacity.

Safety rules for work with NdFeB magnets
GPS Danger

GPS units and mobile phones are highly susceptible to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.

Powerful field

Handle with care. Neodymium magnets act from a distance and connect with huge force, often faster than you can move away.

Implant safety

Medical warning: Neodymium magnets can deactivate heart devices and defibrillators. Do not approach if you have medical devices.

Choking Hazard

Always store magnets out of reach of children. Choking hazard is high, and the effects of magnets connecting inside the body are tragic.

Electronic hazard

Do not bring magnets close to a purse, computer, or screen. The magnetic field can irreversibly ruin these devices and wipe information from cards.

Hand protection

Mind your fingers. Two powerful magnets will snap together instantly with a force of several hundred kilograms, crushing anything in their path. Be careful!

Shattering risk

Watch out for shards. Magnets can explode upon uncontrolled impact, ejecting shards into the air. Wear goggles.

Maximum temperature

Standard neodymium magnets (N-type) lose power when the temperature goes above 80°C. This process is irreversible.

Warning for allergy sufferers

It is widely known that the nickel plating (standard magnet coating) is a common allergen. For allergy sufferers, prevent touching magnets with bare hands and opt for coated magnets.

Mechanical processing

Machining of neodymium magnets carries a risk of fire risk. Neodymium dust reacts violently with oxygen and is difficult to extinguish.

Safety First! Looking for details? Read our article: Are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98