MW 7x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010099
GTIN/EAN: 5906301810988
Diameter Ø
7 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.58 g
Magnetization Direction
↑ axial
Load capacity
0.99 kg / 9.76 N
Magnetic Induction
307.23 mT / 3072 Gs
Coating
[NiCuNi] Nickel
0.381 ZŁ with VAT / pcs + price for transport
0.310 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
alternatively send us a note by means of
contact form
our website.
Strength along with structure of a magnet can be checked using our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
Detailed specification - MW 7x2 / N38 - cylindrical magnet
Specification / characteristics - MW 7x2 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010099 |
| GTIN/EAN | 5906301810988 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 7 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.58 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.99 kg / 9.76 N |
| Magnetic Induction ~ ? | 307.23 mT / 3072 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the magnet - technical parameters
These information constitute the outcome of a mathematical analysis. Results are based on algorithms for the material Nd2Fe14B. Actual conditions may differ. Please consider these data as a supplementary guide when designing systems.
Table 1: Static force (force vs distance) - characteristics
MW 7x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3070 Gs
307.0 mT
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
weak grip |
| 1 mm |
2332 Gs
233.2 mT
|
0.57 kg / 1.26 lbs
571.1 g / 5.6 N
|
weak grip |
| 2 mm |
1590 Gs
159.0 mT
|
0.27 kg / 0.59 lbs
265.5 g / 2.6 N
|
weak grip |
| 3 mm |
1044 Gs
104.4 mT
|
0.11 kg / 0.25 lbs
114.6 g / 1.1 N
|
weak grip |
| 5 mm |
466 Gs
46.6 mT
|
0.02 kg / 0.05 lbs
22.8 g / 0.2 N
|
weak grip |
| 10 mm |
100 Gs
10.0 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
weak grip |
| 15 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
| 20 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Slippage force (vertical surface)
MW 7x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
198.0 g / 1.9 N
|
| 1 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MW 7x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.30 kg / 0.65 lbs
297.0 g / 2.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.20 kg / 0.44 lbs
198.0 g / 1.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 0.22 lbs
99.0 g / 1.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.50 kg / 1.09 lbs
495.0 g / 4.9 N
|
Table 4: Material efficiency (saturation) - power losses
MW 7x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 0.22 lbs
99.0 g / 1.0 N
|
| 1 mm |
|
0.25 kg / 0.55 lbs
247.5 g / 2.4 N
|
| 2 mm |
|
0.50 kg / 1.09 lbs
495.0 g / 4.9 N
|
| 3 mm |
|
0.74 kg / 1.64 lbs
742.5 g / 7.3 N
|
| 5 mm |
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
| 10 mm |
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
| 11 mm |
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
| 12 mm |
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 7x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
OK |
| 40 °C | -2.2% |
0.97 kg / 2.13 lbs
968.2 g / 9.5 N
|
OK |
| 60 °C | -4.4% |
0.95 kg / 2.09 lbs
946.4 g / 9.3 N
|
|
| 80 °C | -6.6% |
0.92 kg / 2.04 lbs
924.7 g / 9.1 N
|
|
| 100 °C | -28.8% |
0.70 kg / 1.55 lbs
704.9 g / 6.9 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MW 7x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.24 kg / 4.93 lbs
4 653 Gs
|
0.34 kg / 0.74 lbs
335 g / 3.3 N
|
N/A |
| 1 mm |
1.76 kg / 3.89 lbs
5 454 Gs
|
0.26 kg / 0.58 lbs
265 g / 2.6 N
|
1.59 kg / 3.50 lbs
~0 Gs
|
| 2 mm |
1.29 kg / 2.84 lbs
4 663 Gs
|
0.19 kg / 0.43 lbs
193 g / 1.9 N
|
1.16 kg / 2.56 lbs
~0 Gs
|
| 3 mm |
0.89 kg / 1.97 lbs
3 884 Gs
|
0.13 kg / 0.30 lbs
134 g / 1.3 N
|
0.81 kg / 1.77 lbs
~0 Gs
|
| 5 mm |
0.40 kg / 0.87 lbs
2 581 Gs
|
0.06 kg / 0.13 lbs
59 g / 0.6 N
|
0.36 kg / 0.78 lbs
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 lbs
932 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
200 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 7x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - warning
MW 7x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
41.69 km/h
(11.58 m/s)
|
0.04 J | |
| 30 mm |
72.17 km/h
(20.05 m/s)
|
0.12 J | |
| 50 mm |
93.17 km/h
(25.88 m/s)
|
0.19 J | |
| 100 mm |
131.76 km/h
(36.60 m/s)
|
0.39 J |
Table 9: Corrosion resistance
MW 7x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 7x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 284 Mx | 12.8 µWb |
| Pc Coefficient | 0.39 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 7x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.99 kg | Standard |
| Water (riverbed) |
1.13 kg
(+0.14 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical wall, the magnet retains only ~20% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. computer case) severely reduces the holding force.
3. Power loss vs temp
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.39
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Advantages and disadvantages of rare earth magnets.
Strengths
- They retain full power for nearly ten years – the loss is just ~1% (in theory),
- They do not lose their magnetic properties even under external field action,
- In other words, due to the metallic finish of silver, the element looks attractive,
- The surface of neodymium magnets generates a strong magnetic field – this is one of their assets,
- Through (appropriate) combination of ingredients, they can achieve high thermal resistance, allowing for action at temperatures approaching 230°C and above...
- Thanks to freedom in constructing and the capacity to customize to individual projects,
- Key role in modern industrial fields – they are utilized in HDD drives, drive modules, medical devices, as well as technologically advanced constructions.
- Relatively small size with high pulling force – neodymium magnets offer high power in tiny dimensions, which allows their use in miniature devices
Limitations
- At strong impacts they can crack, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- Neodymium magnets decrease their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- We recommend casing - magnetic holder, due to difficulties in creating threads inside the magnet and complicated shapes.
- Health risk to health – tiny shards of magnets pose a threat, in case of ingestion, which gains importance in the aspect of protecting the youngest. Additionally, small components of these magnets can be problematic in diagnostics medical when they are in the body.
- With mass production the cost of neodymium magnets is a challenge,
Pull force analysis
Magnetic strength at its maximum – what it depends on?
- on a block made of structural steel, perfectly concentrating the magnetic field
- with a thickness minimum 10 mm
- with an polished touching surface
- with direct contact (no paint)
- during detachment in a direction vertical to the plane
- at standard ambient temperature
Magnet lifting force in use – key factors
- Gap between surfaces – even a fraction of a millimeter of separation (caused e.g. by veneer or dirt) significantly weakens the pulling force, often by half at just 0.5 mm.
- Angle of force application – highest force is reached only during perpendicular pulling. The force required to slide of the magnet along the surface is typically many times smaller (approx. 1/5 of the lifting capacity).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet limits the lifting capacity (the magnet "punches through" it).
- Material composition – not every steel reacts the same. Alloy additives weaken the attraction effect.
- Surface finish – ideal contact is obtained only on smooth steel. Any scratches and bumps create air cushions, weakening the magnet.
- Temperature influence – high temperature reduces magnetic field. Too high temperature can permanently demagnetize the magnet.
Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as 75%. Moreover, even a slight gap between the magnet’s surface and the plate decreases the load capacity.
Safety rules for work with NdFeB magnets
GPS Danger
GPS units and mobile phones are highly susceptible to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.
Powerful field
Handle with care. Neodymium magnets act from a distance and connect with huge force, often faster than you can move away.
Implant safety
Medical warning: Neodymium magnets can deactivate heart devices and defibrillators. Do not approach if you have medical devices.
Choking Hazard
Always store magnets out of reach of children. Choking hazard is high, and the effects of magnets connecting inside the body are tragic.
Electronic hazard
Do not bring magnets close to a purse, computer, or screen. The magnetic field can irreversibly ruin these devices and wipe information from cards.
Hand protection
Mind your fingers. Two powerful magnets will snap together instantly with a force of several hundred kilograms, crushing anything in their path. Be careful!
Shattering risk
Watch out for shards. Magnets can explode upon uncontrolled impact, ejecting shards into the air. Wear goggles.
Maximum temperature
Standard neodymium magnets (N-type) lose power when the temperature goes above 80°C. This process is irreversible.
Warning for allergy sufferers
It is widely known that the nickel plating (standard magnet coating) is a common allergen. For allergy sufferers, prevent touching magnets with bare hands and opt for coated magnets.
Mechanical processing
Machining of neodymium magnets carries a risk of fire risk. Neodymium dust reacts violently with oxygen and is difficult to extinguish.
