e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. All magnesy on our website are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight, solid steel enclosure are perfect for use in variable and difficult climate conditions, including snow and rain more information...

magnets with holders

Holders with magnets can be applied to improve production, exploring underwater areas, or finding meteorites from gold more information...

Shipping always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 70x40 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010097

GTIN: 5906301810964

5

Diameter Ø [±0,1 mm]

70 mm

Height [±0,1 mm]

40 mm

Weight

1154.54 g

Magnetization Direction

↑ axial

Load capacity

154.82 kg / 1518.27 N

Magnetic Induction

466.52 mT

Coating

[NiCuNi] nickel

395.40 with VAT / pcs + price for transport

321.46 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
321.46 ZŁ
395.40 ZŁ
price from 5 pcs
302.17 ZŁ
371.67 ZŁ
price from 10 pcs
282.88 ZŁ
347.95 ZŁ

Looking for a better price?

Call us +48 22 499 98 98 if you prefer send us a note by means of our online form the contact page.
Lifting power as well as form of magnets can be checked with our modular calculator.

Order by 14:00 and we’ll ship today!

MW 70x40 / N38 - cylindrical magnet

Specification/characteristics MW 70x40 / N38 - cylindrical magnet
properties
values
Cat. no.
010097
GTIN
5906301810964
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
70 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
1154.54 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
154.82 kg / 1518.27 N
Magnetic Induction ~ ?
466.52 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 70x40 / N38 are magnets made of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed ordinary iron magnets. Thanks to their strength, they are frequently employed in products that require powerful holding. The standard temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet named MW 70x40 / N38 with a magnetic strength 154.82 kg has a weight of only 1154.54 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the website for the latest information as well as promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are practical in various applications, they can also constitute certain risk. Due to their strong magnetic power, they can attract metallic objects with great force, which can lead to crushing skin and other materials, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical magnet of class N52 and N50 is a strong and extremely powerful magnetic piece in the form of a cylinder, that offers strong holding power and universal application. Competitive price, fast shipping, resistance and broad range of uses.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (based on calculations),
  • They protect against demagnetization induced by surrounding magnetic fields remarkably well,
  • Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • The ability for accurate shaping and customization to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Significant impact in advanced technical fields – they serve a purpose in HDDs, electric motors, medical equipment or even technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment, especially when used outside, we recommend using sealed magnets, such as those made of plastic,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is notable in the family environments. Additionally, small elements from these products can complicate medical imaging when ingested,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Best holding force of the magnet in ideal parameterswhat it depends on?

The given strength of the magnet means the optimal strength, calculated in the best circumstances, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

Determinants of practical lifting force of a magnet

The lifting capacity of a magnet is determined by in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.

Precautions

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets may crack or alternatively crumble with uncontrolled joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are noted for their fragility, which can cause them to crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

 It is essential to keep neodymium magnets out of reach from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98