tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All magnesy neodymowe in our store are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F400 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight, solid steel casing are excellent for use in variable and difficult weather, including during snow and rain check...

magnets with holders

Holders with magnets can be applied to improve production processes, exploring underwater areas, or locating meteors made of ore read...

Enjoy delivery of your order on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 70x40 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010097

GTIN: 5906301810964

5

Diameter Ø [±0,1 mm]

70 mm

Height [±0,1 mm]

40 mm

Weight

1154.54 g

Magnetization Direction

↑ axial

Load capacity

154.82 kg / 1518.27 N

Magnetic Induction

466.52 mT

Coating

[NiCuNi] nickel

420.00 with VAT / pcs + price for transport

341.46 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
341.46 ZŁ
420.00 ZŁ
price from 2 pcs
320.97 ZŁ
394.80 ZŁ
price from 8 pcs
300.48 ZŁ
369.60 ZŁ

Can't decide what to choose?

Call us now +48 888 99 98 98 or get in touch using inquiry form the contact section.
Specifications and form of magnets can be verified with our online calculation tool.

Same-day processing for orders placed before 14:00.

MW 70x40 / N38 - cylindrical magnet

Specification/characteristics MW 70x40 / N38 - cylindrical magnet
properties
values
Cat. no.
010097
GTIN
5906301810964
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
70 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
1154.54 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
154.82 kg / 1518.27 N
Magnetic Induction ~ ?
466.52 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 70x40 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform ordinary iron magnets. Because of their power, they are often employed in products that need strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 70x40 / N38 and a magnetic strength 154.82 kg has a weight of only 1154.54 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the site for the latest information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are practical in many applications, they can also constitute certain dangers. Due to their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin or other materials, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then forming and thermal processing. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to shield them from external factors and prolong their durability. High temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet of class N52 and N50 is a powerful and strong metallic component shaped like a cylinder, that provides strong holding power and versatile application. Attractive price, fast shipping, stability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their magnetic properties for almost ten years – the loss is just ~1% (in theory),
  • They are very resistant to demagnetization caused by external magnetic sources,
  • In other words, due to the metallic nickel coating, the magnet obtains an stylish appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their usage potential,
  • Important function in new technology industries – they are utilized in hard drives, electric drives, healthcare devices and sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall durability,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
  • Possible threat linked to microscopic shards may arise, when consumed by mistake, which is notable in the family environments. Additionally, tiny components from these assemblies can disrupt scanning once in the system,
  • Due to a complex production process, their cost is considerably higher,

Safety Precautions

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will jump and also touch together within a radius of several to around 10 cm from each other.

Magnets made of neodymium are noted for their fragility, which can cause them to crumble.

Magnets made of neodymium are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

 It is essential to keep neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Be careful!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98