SM 25x100 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130366
GTIN: 5906301813149
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
100 mm
Weight
0.01 g
319.80 ZŁ with VAT / pcs + price for transport
260.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Pick up the phone and ask
+48 888 99 98 98
otherwise drop us a message through
request form
our website.
Specifications along with shape of a neodymium magnet can be calculated with our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
SM 25x100 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They have unchanged lifting capacity, and over more than ten years their performance decreases symbolically – ~1% (in testing),
- They are very resistant to demagnetization caused by external magnetic sources,
- Thanks to the glossy finish and silver coating, they have an elegant appearance,
- Magnetic induction on the surface of these magnets is notably high,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Significant impact in cutting-edge sectors – they serve a purpose in computer drives, rotating machines, medical equipment and sophisticated instruments,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage while also enhances its overall strength,
- They lose power at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can rust. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is restricted,
- Possible threat from tiny pieces may arise, in case of ingestion, which is important in the protection of children. It should also be noted that minuscule fragments from these magnets might hinder health screening when ingested,
- Due to the price of neodymium, their cost is relatively high,
Maximum lifting capacity of the magnet – what affects it?
The given holding capacity of the magnet means the highest holding force, determined in ideal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a refined outer layer
- with zero air gap
- with vertical force applied
- under standard ambient temperature
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet depends on in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under parallel forces the holding force is lower. In addition, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.
Precautions with Neodymium Magnets
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnetic are highly susceptible to damage, resulting in breaking.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Safety precautions!
To show why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.
