tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. All magnesy neodymowe on our website are available for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in airtight, solid steel casing are excellent for use in challenging weather conditions, including snow and rain more...

magnetic holders

Holders with magnets can be applied to improve manufacturing, underwater discoveries, or searching for meteorites from gold more information...

Shipping always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships in 3 days

SM 25x100 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130366

GTIN: 5906301813149

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

319.80 with VAT / pcs + price for transport

260.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
260.00 ZŁ
319.80 ZŁ
price from 10 pcs
247.00 ZŁ
303.81 ZŁ
price from 20 pcs
234.00 ZŁ
287.82 ZŁ

Need help making a decision?

Call us +48 888 99 98 98 or contact us by means of inquiry form through our site.
Strength and structure of magnetic components can be estimated using our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

SM 25x100 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x100 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130366
GTIN
5906301813149
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The construction is based on a sealed stainless steel housing. The core is a magnetic circuit generating high induction. Thanks to this, the rod is durable and hygienic.
Due to high power, direct removal of filings can be troublesome. The most effective method is using adhesive tape to wrap the dirt and pull it off. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The Gauss value tells us how effectively the magnet will catch small impurities. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. For the food and precision industry, we recommend the highest parameters.
We can produce a rod with any mounting end. The rod end is adapted to the mounting system in your separator. Contact us for a quote on non-standard dimensions.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (based on calculations),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • The use of a mirror-like silver surface provides a eye-catching finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which expands their usage potential,
  • Key role in modern technologies – they are utilized in data storage devices, electromechanical systems, medical equipment and technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and strengthens its overall robustness,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Health risk due to small fragments may arise, if ingested accidentally, which is important in the context of child safety. Furthermore, tiny components from these magnets can hinder health screening once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given pulling force of the magnet corresponds to the maximum force, measured in a perfect environment, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

 It is essential to keep neodymium magnets out of reach from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets made of neodymium are delicate and can easily break and get damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If joining of neodymium magnets is not controlled, then they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should have them very firmly.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Safety precautions!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98