e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all magnesy in our store are in stock for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to purchase very strong magnet? Magnetic holders in solid and airtight steel casing are excellent for use in challenging weather conditions, including during rain and snow read...

magnets with holders

Holders with magnets can be used to enhance manufacturing, exploring underwater areas, or searching for space rocks made of metal check...

Enjoy shipping of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 10x10x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020110

GTIN: 5906301811169

5

length [±0,1 mm]

10 mm

Width [±0,1 mm]

10 mm

Height [±0,1 mm]

10 mm

Weight

7.5 g

Magnetization Direction

↑ axial

Load capacity

7.9 kg / 77.47 N

Magnetic Induction

539.91 mT

Coating

[NiCuNi] nickel

4.50 with VAT / pcs + price for transport

3.66 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.66 ZŁ
4.50 ZŁ
price from 164 pcs
3.44 ZŁ
4.23 ZŁ
price from 684 pcs
3.22 ZŁ
3.96 ZŁ

Need help making a decision?

Give us a call +48 888 99 98 98 or send us a note via request form our website.
Lifting power and structure of neodymium magnets can be reviewed using our force calculator.

Same-day shipping for orders placed before 14:00.

MPL 10x10x10 / N38 - lamellar magnet

Specification/characteristics MPL 10x10x10 / N38 - lamellar magnet
properties
values
Cat. no.
020110
GTIN
5906301811169
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
10 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
7.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.9 kg / 77.47 N
Magnetic Induction ~ ?
539.91 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets min. MPL 10x10x10 / N38 are magnets created from neodymium in a rectangular form. They are known for their exceptionally potent magnetic properties, which surpass traditional iron magnets.
Thanks to their mighty power, flat magnets are regularly used in products that need very strong attraction.
Typical temperature resistance of flat magnets is 80°C, but depending on the dimensions, this value rises.
In addition, flat magnets usually have different coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their durability.
The magnet labeled MPL 10x10x10 / N38 and a lifting capacity of 7.9 kg with a weight of a mere 7.5 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which make them being an ideal choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often utilized in many devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: Their flat shape makes it easier mounting, particularly when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits designers greater flexibility in placing them in structures, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet may provide better stability, minimizing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the given use and requirements. In some cases, other shapes, like cylindrical or spherical, may be a better choice.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron elements, objects containing nickel, cobalt or special alloys of ferromagnetic metals. Moreover, magnets may weaker affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of magnets creates attractive interactions, which affect objects made of nickel or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the materials used.
Not all materials react to magnets, and examples of such substances are plastics, glass, wooden materials and precious stones. Additionally, magnets do not affect certain metals, such as copper items, aluminum materials, items made of gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards or medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.
A flat magnet N52 and N50 is a strong and extremely powerful magnetic product with the shape of a plate, providing strong holding power and universal applicability. Good price, fast shipping, durability and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They have constant strength, and over nearly ten years their performance decreases symbolically – ~1% (in testing),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • By applying a reflective layer of nickel, the element gains a clean look,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for accurate shaping as well as adjustment to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Wide application in new technology industries – they find application in hard drives, electric motors, healthcare devices as well as sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall resistance,
  • They lose strength at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Potential hazard due to small fragments may arise, in case of ingestion, which is significant in the health of young users. Furthermore, small elements from these products can disrupt scanning when ingested,
  • Due to expensive raw materials, their cost is considerably higher,

Handle Neodymium Magnets with Caution

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets may crack or crumble with uncontrolled joining to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest magnets ever created, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Magnets made of neodymium are known for being fragile, which can cause them to crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Pay attention!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98