tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are in stock for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnets for searching F400 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in variable and difficult weather, including during rain and snow more information...

magnets with holders

Magnetic holders can be used to improve production processes, exploring underwater areas, or searching for meteors from gold read...

We promise to ship your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SMZR 32x225 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140468

GTIN: 5906301813521

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

225 mm

Weight

1245 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
484.00 ZŁ
595.32 ZŁ

Want to negotiate?

Contact us by phone +48 888 99 98 98 otherwise send us a note using our online form the contact form page.
Force along with structure of a magnet can be tested using our magnetic calculator.

Same-day shipping for orders placed before 14:00.

SMZR 32x225 / N52 - magnetic separator with handle

Specification/characteristics SMZR 32x225 / N52 - magnetic separator with handle
properties
values
Cat. no.
140468
GTIN
5906301813521
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
1245 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This gripper serves to instantly distinguish steel from non-ferrous metals. Thanks to it, you can easily assess the value of scrap. It is also useful for extracting small steel elements from crates, ash, or sand.
The tool reacts to black steel but does not attract most stainless steels (austenitic). If the magnet does not attract the element, it is likely a non-ferrous metal or acid-resistant steel.
The neodymium model offers powerful force with low weight, reducing arm fatigue. The strong neodymium field detects even weakly magnetic alloys. The neodymium version is currently the standard in professional scrap yards.
The neodymium magnet is enclosed in a solid metal housing (steel or brass). The handle is designed not to slip in the hand. Thanks to this construction, the separator is resistant to harsh conditions in the scrap yard.
In this model, collected metal must be pulled off manually (wearing a work glove). If you are looking for automatic release, ask about models with a release system. Sliding is more effective than pulling perpendicularly.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They have constant strength, and over more than ten years their performance decreases symbolically – ~1% (in testing),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • Thanks to the polished finish and nickel coating, they have an aesthetic appearance,
  • They have exceptional magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Key role in new technology industries – they serve a purpose in computer drives, electric motors, diagnostic apparatus as well as sophisticated instruments,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment – during outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Possible threat due to small fragments may arise, in case of ingestion, which is significant in the family environments. Furthermore, minuscule fragments from these products might interfere with diagnostics if inside the body,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Detachment force of the magnet in optimal conditionswhat it depends on?

The given strength of the magnet means the optimal strength, determined under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Key elements affecting lifting force

The lifting capacity of a magnet depends on in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate lowers the holding force.

Caution with Neodymium Magnets

Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnetic are delicate as well as can easily break as well as shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If the joining of neodymium magnets is not under control, at that time they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should have them extremely strongly.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

  Neodymium magnets should not be around youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Caution!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98