tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are in stock for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight, solid steel enclosure are excellent for use in difficult, demanding weather, including during snow and rain check...

magnets with holders

Holders with magnets can be applied to improve production, underwater discoveries, or searching for meteors made of ore see...

Order is always shipped on the same day by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships tomorrow

SMZR 32x225 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140468

GTIN: 5906301813521

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

225 mm

Weight

1245 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
484.00 ZŁ
595.32 ZŁ

Want to negotiate?

Call us now +48 888 99 98 98 otherwise send us a note by means of request form through our site.
Lifting power along with structure of magnetic components can be tested using our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

SMZR 32x225 / N52 - magnetic separator with handle

Specification/characteristics SMZR 32x225 / N52 - magnetic separator with handle
properties
values
Cat. no.
140468
GTIN
5906301813521
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
1245 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This gripper serves to instantly distinguish steel from non-ferrous metals. Thanks to it, you can easily assess the value of scrap. It can be used to collect nails and screws from hard-to-reach places.
A neodymium magnet attracts only ferromagnetic metals (carbon steel, cast iron). This is the simplest test to distinguish valuable non-ferrous metals from cheap steel.
Neodymium separators are much lighter and stronger than traditional ferrite ones. Thanks to this, work is more comfortable, and detection is faster and more reliable. The neodymium version is currently the standard in professional scrap yards.
The structure consists of a sealed can protecting the magnet and an ergonomic handle. Tool ergonomics are crucial for frequent use. The tool is durable and prepared for hard work.
Standard hand separators (like SMZR 32x225 / N52) do not have a release mechanism and require manual cleaning. If you are looking for automatic release, ask about models with a release system. Sliding is more effective than pulling perpendicularly.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They retain their attractive force for around ten years – the drop is just ~1% (in theory),
  • They are highly resistant to demagnetization caused by external field interference,
  • In other words, due to the shiny silver coating, the magnet obtains an stylish appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their application range,
  • Wide application in cutting-edge sectors – they are utilized in HDDs, electric motors, clinical machines along with other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create threads in the magnet – the use of a housing is recommended,
  • Possible threat from tiny pieces may arise, in case of ingestion, which is notable in the health of young users. Additionally, small elements from these assemblies may complicate medical imaging when ingested,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum lifting force for a neodymium magnet – what affects it?

The given lifting capacity of the magnet means the maximum lifting force, calculated in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Lifting capacity in real conditions – factors

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, however under shearing force the holding force is lower. In addition, even a small distance {between} the magnet and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are extremely delicate, they easily crack as well as can become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Be careful!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98