e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are in stock for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F200 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight and durable steel enclosure are excellent for use in difficult weather conditions, including in the rain and snow see more...

magnetic holders

Magnetic holders can be used to enhance manufacturing, exploring underwater areas, or locating meteorites from gold more information...

Order is shipped on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 70x50 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010496

GTIN: 5906301811145

0

Diameter Ø [±0,1 mm]

70 mm

Height [±0,1 mm]

50 mm

Weight

1443.17 g

Magnetization Direction

↑ axial

Load capacity

227.2 kg / 2228.07 N

Magnetic Induction

507.83 mT

Coating

[NiCuNi] nickel

516.60 with VAT / pcs + price for transport

420.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
420.00 ZŁ
516.60 ZŁ
price from 5 pcs
394.80 ZŁ
485.60 ZŁ
price from 10 pcs
369.60 ZŁ
454.61 ZŁ

Need help making a decision?

Call us now +48 22 499 98 98 or let us know via inquiry form through our site.
Weight along with appearance of magnetic components can be verified on our modular calculator.

Orders submitted before 14:00 will be dispatched today!

MW 70x50 / N38 - cylindrical magnet

Specification/characteristics MW 70x50 / N38 - cylindrical magnet
properties
values
Cat. no.
010496
GTIN
5906301811145
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
70 mm [±0,1 mm]
Height
50 mm [±0,1 mm]
Weight
1443.17 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
227.2 kg / 2228.07 N
Magnetic Induction ~ ?
507.83 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 70x50 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed traditional iron magnets. Thanks to their power, they are often employed in products that need powerful holding. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet designated MW 70x50 / N38 and a magnetic strength 227.2 kg weighs only 1443.17 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the site for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are useful in many applications, they can also constitute certain risk. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to crushing skin and other materials, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as epoxy, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical magnet N52 and N50 is a powerful and highly strong magnetic product shaped like a cylinder, featuring high force and broad usability. Good price, availability, stability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • Their power is maintained, and after around 10 years, it drops only by ~1% (according to research),
  • They are very resistant to demagnetization caused by external field interference,
  • In other words, due to the metallic nickel coating, the magnet obtains an professional appearance,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for custom shaping as well as adjustment to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Wide application in new technology industries – they find application in HDDs, rotating machines, medical equipment as well as sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall strength,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can rust. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
  • Potential hazard from tiny pieces may arise, especially if swallowed, which is crucial in the health of young users. Moreover, minuscule fragments from these products might hinder health screening when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what contributes to it?

The given holding capacity of the magnet means the highest holding force, assessed in the best circumstances, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate lowers the holding force.

Exercise Caution with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Magnets made of neodymium are noted for their fragility, which can cause them to crumble.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98