tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all magnesy in our store are in stock for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in solid and airtight steel casing are ideally suited for use in variable and difficult weather, including during rain and snow see more...

magnetic holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or searching for space rocks from gold more...

Enjoy shipping of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships in 2 days

MW 8x20 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010475

GTIN: 5906301811138

5

Diameter Ø [±0,1 mm]

8 mm

Height [±0,1 mm]

20 mm

Weight

7.54 g

Magnetization Direction

→ diametrical

Load capacity

8.85 kg / 86.79 N

Magnetic Induction

607.01 mT

Coating

[NiCuNi] nickel

4.60 with VAT / pcs + price for transport

3.74 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.74 ZŁ
4.60 ZŁ
price from 200 pcs
3.52 ZŁ
4.32 ZŁ
price from 700 pcs
3.29 ZŁ
4.05 ZŁ

Need advice?

Give us a call +48 22 499 98 98 or drop us a message through form the contact page.
Specifications along with form of magnetic components can be checked on our online calculation tool.

Order by 14:00 and we’ll ship today!

MW 8x20 / N38 - cylindrical magnet

Specification/characteristics MW 8x20 / N38 - cylindrical magnet
properties
values
Cat. no.
010475
GTIN
5906301811138
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
8 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
7.54 g [±0,1 mm]
Magnetization Direction
→ diametrical
Load capacity ~ ?
8.85 kg / 86.79 N
Magnetic Induction ~ ?
607.01 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical magnets from this series are made of sintered Neodymium-Iron-Boron (NdFeB). As a result, they offer high magnetic density while maintaining compact dimensions. Model MW 8x20 / N38 has a pull force of approx. 8.85 kg. Their symmetrical shape makes them excellent for installing in sockets, generators and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
We recommend installation by gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Professional industrial adhesives are best, which do not react with the nickel coating. Do not hit the magnets, as neodymium is a brittle material and can easily crack upon impact.
The 'N' number indicates the maximum strength of the material. A higher value means more power for the same size. The universal option is N38, which provides an optimal price-to-power ratio. For projects requiring extreme strength, we recommend grade N52, which is the most powerful option on the market.
Neodymium magnets are coated with a protective layer of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects in indoor conditions. This is not a hermetic barrier. In outdoor or wet conditions, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
Cylindrical magnets are a key component of many modern machines. They are utilized in electric drives and in filters catching metal filings. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
Standard neodymium magnets (grade N) work safely up to 80°C. Exceeding this limit risks permanent loss of power. For work in hot environments (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). It is worth knowing that neodymium magnets do not tolerate thermal shock well.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • They have stable power, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
  • Their ability to resist magnetic interference from external fields is impressive,
  • In other words, due to the shiny silver coating, the magnet obtains an professional appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • The ability for custom shaping or customization to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Important function in new technology industries – they are utilized in HDDs, rotating machines, healthcare devices as well as high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time enhances its overall resistance,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Health risk related to magnet particles may arise, if ingested accidentally, which is notable in the protection of children. Furthermore, small elements from these assemblies might disrupt scanning after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what it depends on?

The given pulling force of the magnet represents the maximum force, calculated in a perfect environment, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the holding force.

Precautions

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Neodymium magnetic are highly susceptible to damage, resulting in their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If joining of neodymium magnets is not controlled, then they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should have them very strongly.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be around children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98