MW 8x20 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010475
GTIN: 5906301811138
Diameter Ø [±0,1 mm]
8 mm
Height [±0,1 mm]
20 mm
Weight
7.54 g
Magnetization Direction
→ diametrical
Load capacity
8.85 kg / 86.79 N
Magnetic Induction
607.01 mT
Coating
[NiCuNi] nickel
4.60 ZŁ with VAT / pcs + price for transport
3.74 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us
+48 22 499 98 98
otherwise contact us through
inquiry form
the contact form page.
Specifications as well as form of a magnet can be tested using our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
MW 8x20 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- Their power is durable, and after approximately 10 years, it drops only by ~1% (theoretically),
- They are highly resistant to demagnetization caused by external magnetic sources,
- The use of a decorative silver surface provides a smooth finish,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
- With the option for customized forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Important function in advanced technical fields – they are utilized in computer drives, rotating machines, healthcare devices and technologically developed systems,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also enhances its overall resistance,
- They lose power at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to wet conditions can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of coated materials,
- Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
- Safety concern due to small fragments may arise, if ingested accidentally, which is notable in the family environments. Furthermore, miniature parts from these assemblies might interfere with diagnostics once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Breakaway strength of the magnet in ideal conditions – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, measured under optimal conditions, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Lifting capacity in real conditions – factors
The lifting capacity of a magnet is influenced by in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the holding force is lower. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Precautions
Magnets made of neodymium are delicate as well as can easily break as well as get damaged.
Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, can even cut off a finger or there can be a significant pressure or even a fracture.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Pay attention!
In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.
