MW 8x20 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010475
GTIN/EAN: 5906301811138
Diameter Ø
8 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
7.54 g
Magnetization Direction
→ diametrical
Load capacity
1.30 kg / 12.71 N
Magnetic Induction
607.01 mT / 6070 Gs
Coating
[NiCuNi] Nickel
4.60 ZŁ with VAT / pcs + price for transport
3.74 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Call us
+48 888 99 98 98
if you prefer contact us via
inquiry form
our website.
Specifications and shape of a magnet can be checked with our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
MW 8x20 / N38 - cylindrical magnet
Specification / characteristics MW 8x20 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010475 |
| GTIN/EAN | 5906301811138 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 8 mm [±0,1 mm] |
| Height | 20 mm [±0,1 mm] |
| Weight | 7.54 g |
| Magnetization Direction | → diametrical |
| Load capacity ~ ? | 1.30 kg / 12.71 N |
| Magnetic Induction ~ ? | 607.01 mT / 6070 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the product - technical parameters
These values constitute the outcome of a mathematical analysis. Values were calculated on models for the material Nd2Fe14B. Operational conditions may differ. Use these data as a supplementary guide when designing systems.
MW 8x20 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
6064 Gs
606.4 mT
|
1.30 kg / 1300.0 g
12.8 N
|
safe |
| 1 mm |
4587 Gs
458.7 mT
|
0.74 kg / 743.7 g
7.3 N
|
safe |
| 2 mm |
3327 Gs
332.7 mT
|
0.39 kg / 391.4 g
3.8 N
|
safe |
| 3 mm |
2388 Gs
238.8 mT
|
0.20 kg / 201.6 g
2.0 N
|
safe |
| 5 mm |
1281 Gs
128.1 mT
|
0.06 kg / 58.0 g
0.6 N
|
safe |
| 10 mm |
389 Gs
38.9 mT
|
0.01 kg / 5.4 g
0.1 N
|
safe |
| 15 mm |
169 Gs
16.9 mT
|
0.00 kg / 1.0 g
0.0 N
|
safe |
| 20 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.3 g
0.0 N
|
safe |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
MW 8x20 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 78.0 g
0.8 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 8x20 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.39 kg / 390.0 g
3.8 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.26 kg / 260.0 g
2.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.13 kg / 130.0 g
1.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.65 kg / 650.0 g
6.4 N
|
MW 8x20 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.13 kg / 130.0 g
1.3 N
|
| 1 mm |
|
0.33 kg / 325.0 g
3.2 N
|
| 2 mm |
|
0.65 kg / 650.0 g
6.4 N
|
| 5 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
| 10 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
MW 8x20 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.30 kg / 1300.0 g
12.8 N
|
OK |
| 40 °C | -2.2% |
1.27 kg / 1271.4 g
12.5 N
|
OK |
| 60 °C | -4.4% |
1.24 kg / 1242.8 g
12.2 N
|
OK |
| 80 °C | -6.6% |
1.21 kg / 1214.2 g
11.9 N
|
|
| 100 °C | -28.8% |
0.93 kg / 925.6 g
9.1 N
|
MW 8x20 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
11.40 kg / 11396 g
111.8 N
6 154 Gs
|
N/A |
| 1 mm |
8.76 kg / 8758 g
85.9 N
10 632 Gs
|
7.88 kg / 7882 g
77.3 N
~0 Gs
|
| 2 mm |
6.52 kg / 6520 g
64.0 N
9 174 Gs
|
5.87 kg / 5868 g
57.6 N
~0 Gs
|
| 3 mm |
4.76 kg / 4758 g
46.7 N
7 837 Gs
|
4.28 kg / 4282 g
42.0 N
~0 Gs
|
| 5 mm |
2.46 kg / 2461 g
24.1 N
5 637 Gs
|
2.22 kg / 2215 g
21.7 N
~0 Gs
|
| 10 mm |
0.51 kg / 508 g
5.0 N
2 561 Gs
|
0.46 kg / 457 g
4.5 N
~0 Gs
|
| 20 mm |
0.05 kg / 47 g
0.5 N
778 Gs
|
0.04 kg / 42 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
107 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 8x20 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 4.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.0 cm |
| Car key | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
MW 8x20 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
13.28 km/h
(3.69 m/s)
|
0.05 J | |
| 30 mm |
22.94 km/h
(6.37 m/s)
|
0.15 J | |
| 50 mm |
29.61 km/h
(8.23 m/s)
|
0.26 J | |
| 100 mm |
41.88 km/h
(11.63 m/s)
|
0.51 J |
MW 8x20 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
MW 8x20 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 457 Mx | 34.6 µWb |
| Pc Coefficient | 1.31 | High (Stable) |
MW 8x20 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.30 kg | Standard |
| Water (riverbed) |
1.49 kg
(+0.19 kg Buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical wall, the magnet holds only ~20% of its perpendicular strength.
2. Steel saturation
*Thin metal sheet (e.g. 0.5mm PC case) severely reduces the holding force.
3. Power loss vs temp
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.31
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also proposals
Pros and cons of Nd2Fe14B magnets.
Benefits
- They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (based on calculations),
- Magnets perfectly protect themselves against demagnetization caused by external fields,
- A magnet with a metallic silver surface is more attractive,
- They show high magnetic induction at the operating surface, which improves attraction properties,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and can function (depending on the shape) even at a temperature of 230°C or more...
- In view of the ability of precise forming and customization to individualized projects, neodymium magnets can be manufactured in a variety of geometric configurations, which increases their versatility,
- Fundamental importance in advanced technology sectors – they are commonly used in magnetic memories, drive modules, advanced medical instruments, also multitasking production systems.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Disadvantages
- To avoid cracks under impact, we suggest using special steel housings. Such a solution secures the magnet and simultaneously increases its durability.
- NdFeB magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- They rust in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- Due to limitations in creating nuts and complicated shapes in magnets, we propose using casing - magnetic holder.
- Potential hazard related to microscopic parts of magnets pose a threat, in case of ingestion, which becomes key in the aspect of protecting the youngest. It is also worth noting that small components of these devices are able to disrupt the diagnostic process medical in case of swallowing.
- Due to expensive raw materials, their price is higher than average,
Lifting parameters
Magnetic strength at its maximum – what affects it?
- using a base made of low-carbon steel, acting as a circuit closing element
- with a cross-section minimum 10 mm
- characterized by smoothness
- without the slightest clearance between the magnet and steel
- for force applied at a right angle (pull-off, not shear)
- at ambient temperature room level
Lifting capacity in real conditions – factors
- Clearance – the presence of foreign body (paint, dirt, air) interrupts the magnetic circuit, which lowers power steeply (even by 50% at 0.5 mm).
- Direction of force – highest force is reached only during perpendicular pulling. The resistance to sliding of the magnet along the plate is standardly many times lower (approx. 1/5 of the lifting capacity).
- Substrate thickness – to utilize 100% power, the steel must be adequately massive. Thin sheet restricts the attraction force (the magnet "punches through" it).
- Steel grade – the best choice is pure iron steel. Cast iron may attract less.
- Surface finish – full contact is obtained only on smooth steel. Any scratches and bumps create air cushions, weakening the magnet.
- Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they lose power, and in frost they can be stronger (up to a certain limit).
Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the holding force is lower. Moreover, even a minimal clearance between the magnet’s surface and the plate reduces the holding force.
Machining danger
Machining of NdFeB material carries a risk of fire risk. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Danger to pacemakers
Warning for patients: Powerful magnets affect medical devices. Keep minimum 30 cm distance or ask another person to work with the magnets.
Eye protection
NdFeB magnets are ceramic materials, meaning they are fragile like glass. Impact of two magnets will cause them breaking into shards.
Heat sensitivity
Regular neodymium magnets (grade N) lose power when the temperature surpasses 80°C. This process is irreversible.
GPS and phone interference
An intense magnetic field negatively affects the operation of magnetometers in phones and GPS navigation. Keep magnets close to a smartphone to prevent damaging the sensors.
Warning for allergy sufferers
It is widely known that the nickel plating (the usual finish) is a strong allergen. If you have an allergy, prevent direct skin contact and choose encased magnets.
Immense force
Exercise caution. Neodymium magnets act from a distance and connect with massive power, often faster than you can move away.
Do not give to children
Always keep magnets out of reach of children. Risk of swallowing is high, and the consequences of magnets connecting inside the body are life-threatening.
Serious injuries
Big blocks can smash fingers in a fraction of a second. Do not place your hand between two attracting surfaces.
Magnetic media
Do not bring magnets close to a purse, laptop, or TV. The magnetic field can irreversibly ruin these devices and erase data from cards.
