Neodymiums – complete shape selection

Looking for massive power in small size? Our range includes complete range of various shapes and sizes. Best choice for home use, workshop and industrial tasks. Check our offer with fast shipping.

check price list and dimensions

Magnet fishing sets (hobbyists)

Begin your hobby related to seabed exploration! Our double-handle grips (F200, F400) provide safety guarantee and immense power. Stainless steel construction and reinforced ropes will perform in rivers and lakes.

choose your water magnet

Magnetic mounting systems

Reliable solutions for mounting without drilling. Threaded grips (external or internal) provide instant organization of work on production halls. They are indispensable installing lamps, sensors and banners.

see industrial applications

📦 Fast shipping: buy by 14:00, package goes out today!

Dhit sp. z o.o.
Product available Ships tomorrow

MW 8x20 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010475

GTIN/EAN: 5906301811138

5.00

Diameter Ø

8 mm [±0,1 mm]

Height

20 mm [±0,1 mm]

Weight

7.54 g

Magnetization Direction

→ diametrical

Load capacity

1.30 kg / 12.71 N

Magnetic Induction

607.01 mT / 6070 Gs

Coating

[NiCuNi] Nickel

4.60 with VAT / pcs + price for transport

3.74 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.74 ZŁ
4.60 ZŁ
price from 200 pcs
3.52 ZŁ
4.32 ZŁ
price from 700 pcs
3.29 ZŁ
4.05 ZŁ
Not sure what to buy?

Pick up the phone and ask +48 888 99 98 98 or let us know using our online form our website.
Lifting power as well as appearance of a magnet can be checked on our modular calculator.

Same-day processing for orders placed before 14:00.

Technical - MW 8x20 / N38 - cylindrical magnet

Specification / characteristics - MW 8x20 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010475
GTIN/EAN 5906301811138
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 8 mm [±0,1 mm]
Height 20 mm [±0,1 mm]
Weight 7.54 g
Magnetization Direction → diametrical
Load capacity ~ ? 1.30 kg / 12.71 N
Magnetic Induction ~ ? 607.01 mT / 6070 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 8x20 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the assembly - report

Presented information constitute the outcome of a physical analysis. Values rely on models for the class Nd2Fe14B. Actual performance might slightly differ from theoretical values. Please consider these data as a reference point when designing systems.

Table 1: Static force (force vs distance) - characteristics
MW 8x20 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 6064 Gs
606.4 mT
1.30 kg / 2.87 LBS
1300.0 g / 12.8 N
weak grip
1 mm 4587 Gs
458.7 mT
0.74 kg / 1.64 LBS
743.7 g / 7.3 N
weak grip
2 mm 3327 Gs
332.7 mT
0.39 kg / 0.86 LBS
391.4 g / 3.8 N
weak grip
3 mm 2388 Gs
238.8 mT
0.20 kg / 0.44 LBS
201.6 g / 2.0 N
weak grip
5 mm 1281 Gs
128.1 mT
0.06 kg / 0.13 LBS
58.0 g / 0.6 N
weak grip
10 mm 389 Gs
38.9 mT
0.01 kg / 0.01 LBS
5.4 g / 0.1 N
weak grip
15 mm 169 Gs
16.9 mT
0.00 kg / 0.00 LBS
1.0 g / 0.0 N
weak grip
20 mm 90 Gs
9.0 mT
0.00 kg / 0.00 LBS
0.3 g / 0.0 N
weak grip
30 mm 35 Gs
3.5 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
weak grip
50 mm 10 Gs
1.0 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
weak grip

Table 2: Slippage capacity (vertical surface)
MW 8x20 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.26 kg / 0.57 LBS
260.0 g / 2.6 N
1 mm Stal (~0.2) 0.15 kg / 0.33 LBS
148.0 g / 1.5 N
2 mm Stal (~0.2) 0.08 kg / 0.17 LBS
78.0 g / 0.8 N
3 mm Stal (~0.2) 0.04 kg / 0.09 LBS
40.0 g / 0.4 N
5 mm Stal (~0.2) 0.01 kg / 0.03 LBS
12.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 LBS
2.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 8x20 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.39 kg / 0.86 LBS
390.0 g / 3.8 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.26 kg / 0.57 LBS
260.0 g / 2.6 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.13 kg / 0.29 LBS
130.0 g / 1.3 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.65 kg / 1.43 LBS
650.0 g / 6.4 N

Table 4: Material efficiency (substrate influence) - power losses
MW 8x20 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.13 kg / 0.29 LBS
130.0 g / 1.3 N
1 mm
25%
0.33 kg / 0.72 LBS
325.0 g / 3.2 N
2 mm
50%
0.65 kg / 1.43 LBS
650.0 g / 6.4 N
3 mm
75%
0.98 kg / 2.15 LBS
975.0 g / 9.6 N
5 mm
100%
1.30 kg / 2.87 LBS
1300.0 g / 12.8 N
10 mm
100%
1.30 kg / 2.87 LBS
1300.0 g / 12.8 N
11 mm
100%
1.30 kg / 2.87 LBS
1300.0 g / 12.8 N
12 mm
100%
1.30 kg / 2.87 LBS
1300.0 g / 12.8 N

Table 5: Working in heat (material behavior) - thermal limit
MW 8x20 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 1.30 kg / 2.87 LBS
1300.0 g / 12.8 N
OK
40 °C -2.2% 1.27 kg / 2.80 LBS
1271.4 g / 12.5 N
OK
60 °C -4.4% 1.24 kg / 2.74 LBS
1242.8 g / 12.2 N
OK
80 °C -6.6% 1.21 kg / 2.68 LBS
1214.2 g / 11.9 N
100 °C -28.8% 0.93 kg / 2.04 LBS
925.6 g / 9.1 N

Table 6: Magnet-Magnet interaction (repulsion) - field collision
MW 8x20 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 11.40 kg / 25.12 LBS
6 154 Gs
1.71 kg / 3.77 LBS
1709 g / 16.8 N
N/A
1 mm 8.76 kg / 19.31 LBS
10 632 Gs
1.31 kg / 2.90 LBS
1314 g / 12.9 N
7.88 kg / 17.38 LBS
~0 Gs
2 mm 6.52 kg / 14.37 LBS
9 174 Gs
0.98 kg / 2.16 LBS
978 g / 9.6 N
5.87 kg / 12.94 LBS
~0 Gs
3 mm 4.76 kg / 10.49 LBS
7 837 Gs
0.71 kg / 1.57 LBS
714 g / 7.0 N
4.28 kg / 9.44 LBS
~0 Gs
5 mm 2.46 kg / 5.43 LBS
5 637 Gs
0.37 kg / 0.81 LBS
369 g / 3.6 N
2.22 kg / 4.88 LBS
~0 Gs
10 mm 0.51 kg / 1.12 LBS
2 561 Gs
0.08 kg / 0.17 LBS
76 g / 0.7 N
0.46 kg / 1.01 LBS
~0 Gs
20 mm 0.05 kg / 0.10 LBS
778 Gs
0.01 kg / 0.02 LBS
7 g / 0.1 N
0.04 kg / 0.09 LBS
~0 Gs
50 mm 0.00 kg / 0.00 LBS
107 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
60 mm 0.00 kg / 0.00 LBS
69 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
70 mm 0.00 kg / 0.00 LBS
48 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
80 mm 0.00 kg / 0.00 LBS
34 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
90 mm 0.00 kg / 0.00 LBS
25 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
100 mm 0.00 kg / 0.00 LBS
19 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs

Table 7: Safety (HSE) (electronics) - warnings
MW 8x20 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 6.5 cm
Hearing aid 10 Gs (1.0 mT) 5.0 cm
Timepiece 20 Gs (2.0 mT) 4.0 cm
Mobile device 40 Gs (4.0 mT) 3.0 cm
Remote 50 Gs (5.0 mT) 3.0 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Impact energy (kinetic energy) - collision effects
MW 8x20 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 13.28 km/h
(3.69 m/s)
0.05 J
30 mm 22.94 km/h
(6.37 m/s)
0.15 J
50 mm 29.61 km/h
(8.23 m/s)
0.26 J
100 mm 41.88 km/h
(11.63 m/s)
0.51 J

Table 9: Anti-corrosion coating durability
MW 8x20 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MW 8x20 / N38

Parameter Value SI Unit / Description
Magnetic Flux 3 457 Mx 34.6 µWb
Pc Coefficient 1.31 High (Stable)

Table 11: Hydrostatics and buoyancy
MW 8x20 / N38

Environment Effective steel pull Effect
Air (land) 1.30 kg Standard
Water (riverbed) 1.49 kg
(+0.19 kg buoyancy gain)
+14.5%
Corrosion warning: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Shear force

*Note: On a vertical surface, the magnet holds only a fraction of its nominal pull.

2. Steel saturation

*Thin metal sheet (e.g. 0.5mm PC case) significantly limits the holding force.

3. Temperature resistance

*For standard magnets, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.31

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Environmental data
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010475-2026
Magnet Unit Converter
Magnet pull force

Field Strength

View more proposals

The offered product is an extremely powerful rod magnet, composed of durable NdFeB material, which, at dimensions of Ø8x20 mm, guarantees optimal power. This specific item is characterized by an accuracy of ±0.1mm and professional build quality, making it an excellent solution for professional engineers and designers. As a cylindrical magnet with significant force (approx. 1.30 kg), this product is in stock from our European logistics center, ensuring quick order fulfillment. Moreover, its Ni-Cu-Ni coating effectively protects it against corrosion in standard operating conditions, ensuring an aesthetic appearance and durability for years.
This model is ideal for building electric motors, advanced Hall effect sensors, and efficient filters, where maximum induction on a small surface counts. Thanks to the high power of 12.71 N with a weight of only 7.54 g, this rod is indispensable in miniature devices and wherever low weight is crucial.
Since our magnets have a very precise dimensions, the recommended way is to glue them into holes with a slightly larger diameter (e.g., 8.1 mm) using two-component epoxy glues. To ensure long-term durability in industry, anaerobic resins are used, which are safe for nickel and fill the gap, guaranteeing durability of the connection.
Magnets NdFeB grade N38 are strong enough for the majority of applications in modeling and machine building, where extreme miniaturization with maximum force is not required. If you need even stronger magnets in the same volume (Ø8x20), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard in continuous sale in our store.
This model is characterized by dimensions Ø8x20 mm, which, at a weight of 7.54 g, makes it an element with impressive magnetic energy density. The key parameter here is the holding force amounting to approximately 1.30 kg (force ~12.71 N), which, with such compact dimensions, proves the high power of the NdFeB material. The product has a [NiCuNi] coating, which secures it against oxidation, giving it an aesthetic, silvery shine.
This rod magnet is magnetized axially (along the height of 20 mm), which means that the N and S poles are located on the flat, circular surfaces. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized through the diameter if your project requires it.

Pros as well as cons of Nd2Fe14B magnets.

Advantages

Besides their durability, neodymium magnets are valued for these benefits:
  • They virtually do not lose strength, because even after ten years the decline in efficiency is only ~1% (in laboratory conditions),
  • Magnets effectively protect themselves against demagnetization caused by foreign field sources,
  • A magnet with a metallic silver surface looks better,
  • The surface of neodymium magnets generates a strong magnetic field – this is a key feature,
  • Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the form) even at a temperature of 230°C or more...
  • Thanks to modularity in forming and the ability to modify to unusual requirements,
  • Huge importance in future technologies – they find application in mass storage devices, brushless drives, precision medical tools, and other advanced devices.
  • Thanks to concentrated force, small magnets offer high operating force, with minimal size,

Limitations

What to avoid - cons of neodymium magnets: tips and applications.
  • To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
  • NdFeB magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
  • Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material resistant to moisture, when using outdoors
  • Due to limitations in realizing threads and complicated shapes in magnets, we recommend using a housing - magnetic holder.
  • Health risk resulting from small fragments of magnets pose a threat, when accidentally swallowed, which becomes key in the aspect of protecting the youngest. Furthermore, small elements of these devices can be problematic in diagnostics medical in case of swallowing.
  • With large orders the cost of neodymium magnets can be a barrier,

Holding force characteristics

Breakaway strength of the magnet in ideal conditionswhat affects it?

Magnet power is the result of a measurement for ideal contact conditions, assuming:
  • on a base made of mild steel, effectively closing the magnetic flux
  • with a thickness no less than 10 mm
  • with an ground contact surface
  • with direct contact (without impurities)
  • under perpendicular force direction (90-degree angle)
  • in neutral thermal conditions

Impact of factors on magnetic holding capacity in practice

Effective lifting capacity is influenced by working environment parameters, mainly (from priority):
  • Gap between surfaces – every millimeter of distance (caused e.g. by veneer or dirt) drastically reduces the pulling force, often by half at just 0.5 mm.
  • Force direction – declared lifting capacity refers to pulling vertically. When slipping, the magnet holds significantly lower power (typically approx. 20-30% of nominal force).
  • Metal thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of generating force.
  • Steel grade – ideal substrate is pure iron steel. Hardened steels may have worse magnetic properties.
  • Surface finish – ideal contact is possible only on smooth steel. Rough texture reduce the real contact area, reducing force.
  • Thermal environment – temperature increase causes a temporary drop of induction. It is worth remembering the maximum operating temperature for a given model.

Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the lifting capacity is smaller. Moreover, even a slight gap between the magnet and the plate decreases the load capacity.

Safe handling of neodymium magnets
Keep away from electronics

A strong magnetic field disrupts the functioning of magnetometers in smartphones and GPS navigation. Do not bring magnets near a smartphone to prevent breaking the sensors.

Sensitization to coating

Nickel alert: The nickel-copper-nickel coating contains nickel. If redness occurs, immediately stop handling magnets and use protective gear.

Choking Hazard

NdFeB magnets are not suitable for play. Accidental ingestion of multiple magnets may result in them connecting inside the digestive tract, which poses a severe health hazard and necessitates urgent medical intervention.

Electronic hazard

Intense magnetic fields can corrupt files on payment cards, hard drives, and storage devices. Stay away of min. 10 cm.

Do not drill into magnets

Machining of NdFeB material carries a risk of fire risk. Neodymium dust reacts violently with oxygen and is difficult to extinguish.

Crushing risk

Big blocks can crush fingers in a fraction of a second. Never put your hand betwixt two strong magnets.

Medical implants

Individuals with a pacemaker must keep an large gap from magnets. The magnetism can disrupt the functioning of the life-saving device.

Safe operation

Exercise caution. Neodymium magnets attract from a distance and connect with massive power, often faster than you can react.

Do not overheat magnets

Avoid heat. Neodymium magnets are susceptible to temperature. If you require operation above 80°C, inquire about special high-temperature series (H, SH, UH).

Shattering risk

Watch out for shards. Magnets can explode upon uncontrolled impact, launching shards into the air. Eye protection is mandatory.

Attention! Need more info? Check our post: Are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98