e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are available for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in variable and difficult weather conditions, including during snow and rain see...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater exploration, or finding meteors made of ore more information...

We promise to ship ordered magnets if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 8x20 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010475

GTIN: 5906301811138

5

Diameter Ø [±0,1 mm]

8 mm

Height [±0,1 mm]

20 mm

Weight

7.54 g

Magnetization Direction

→ diametrical

Load capacity

8.85 kg / 86.79 N

Magnetic Induction

607.01 mT

Coating

[NiCuNi] nickel

4.60 with VAT / pcs + price for transport

3.74 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.74 ZŁ
4.60 ZŁ
price from 200 pcs
3.52 ZŁ
4.32 ZŁ
price from 700 pcs
3.29 ZŁ
4.05 ZŁ

Do you have a dilemma?

Contact us by phone +48 22 499 98 98 otherwise get in touch through our online form the contact section.
Parameters and form of a neodymium magnet can be estimated with our online calculation tool.

Order by 14:00 and we’ll ship today!

MW 8x20 / N38 - cylindrical magnet

Specification/characteristics MW 8x20 / N38 - cylindrical magnet
properties
values
Cat. no.
010475
GTIN
5906301811138
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
8 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
7.54 g [±0,1 mm]
Magnetization Direction
→ diametrical
Load capacity ~ ?
8.85 kg / 86.79 N
Magnetic Induction ~ ?
607.01 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 8x20 / N38 are magnets created of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed traditional ferrite magnets. Because of their strength, they are frequently used in products that require powerful holding. The typical temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet named MW 8x20 / N38 and a magnetic lifting capacity of 8.85 kg weighs only 7.54 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of gold-nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the site for the latest information and offers, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very practical in various applications, they can also pose certain risk. Due to their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin or other materials, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with other metals and then forming and heat treating. Their powerful magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as nickel, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical neodymium magnet N52 and N50 is a strong and powerful metal object with the shape of a cylinder, providing strong holding power and broad usability. Competitive price, availability, durability and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have constant strength, and over nearly ten years their performance decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic surroundings,
  • The use of a decorative nickel surface provides a eye-catching finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
  • Significant impact in cutting-edge sectors – they are utilized in hard drives, electromechanical systems, healthcare devices and sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time enhances its overall strength,
  • They lose magnetic force at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
  • Potential hazard from tiny pieces may arise, in case of ingestion, which is significant in the protection of children. It should also be noted that small elements from these assemblies can complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Determinants of lifting force in real conditions

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, however under shearing force the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet and the plate reduces the holding force.

Safety Guidelines with Neodymium Magnets

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnetic are characterized by their fragility, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

 It is essential to maintain neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Exercise caution!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98