MW 12x4 / N52 - cylindrical magnet
cylindrical magnet
Catalog no 010500
Diameter Ø [±0,1 mm]
12 mm
Height [±0,1 mm]
4 mm
Weight
3.39 g
Magnetization Direction
↑ axial
Load capacity
3.6 kg / 35.3 N
Magnetic Induction
400.45 mT
Coating
[NiCuNi] nickel
2.18 ZŁ with VAT / pcs + price for transport
1.77 ZŁ net + 23% VAT / pcs
1.40 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Looking for a better price?
Contact us by phone
+48 888 99 98 98
otherwise drop us a message via
request form
the contact section.
Parameters as well as form of magnetic components can be checked with our
power calculator.
Same-day processing for orders placed before 14:00.
MW 12x4 / N52 - cylindrical magnet
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as gold, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional pulling force, neodymium magnets offer the following advantages:
- Their magnetic field remains stable, and after around 10 years, it drops only by ~1% (theoretically),
- Their ability to resist magnetic interference from external fields is among the best,
- The use of a mirror-like nickel surface provides a refined finish,
- They have extremely strong magnetic induction on the surface of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for tailored forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Significant impact in cutting-edge sectors – they are used in HDDs, electric drives, medical equipment as well as sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in small systems
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture while also reinforces its overall strength,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Possible threat linked to microscopic shards may arise, if ingested accidentally, which is important in the protection of children. Additionally, minuscule fragments from these assemblies can hinder health screening when ingested,
- In cases of large-volume purchasing, neodymium magnet cost is a challenge,
Maximum lifting capacity of the magnet – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, calculated in the best circumstances, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Impact of factors on magnetic holding capacity in practice
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.
Precautions
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or even a fracture.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets made of neodymium are delicate and can easily break as well as get damaged.
Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Safety precautions!
So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.