e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. All "magnets" on our website are available for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for searching F300 GOLD

Where to purchase very strong neodymium magnet? Magnetic holders in airtight, solid steel casing are excellent for use in difficult, demanding climate conditions, including during snow and rain read...

magnets with holders

Holders with magnets can be used to facilitate production processes, underwater discoveries, or locating space rocks from gold see...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x250 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130275

GTIN: 5906301812777

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

250 mm

Weight

0.01 g

553.50 with VAT / pcs + price for transport

450.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
450.00 ZŁ
553.50 ZŁ
price from 10 pcs
405.00 ZŁ
498.15 ZŁ

Not sure about your choice?

Pick up the phone and ask +48 888 99 98 98 otherwise drop us a message through request form the contact form page.
Parameters and appearance of magnetic components can be tested on our power calculator.

Order by 14:00 and we’ll ship today!

SM 18x250 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x250 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130275
GTIN
5906301812777
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
250 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. In this way, it is possible to effectively separate ferromagnetic elements from different substances. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food industry to clear metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, otherwise magnetic separators, find application in food production, metal separation as well as waste processing. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the more effective. But, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines are longer and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, AISI 316 steel exhibits the best resistance due to its outstanding anti-corrosion properties.
Magnetic bars stand out for their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other separators that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it is recommended cleaning regularly, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Testing of the rollers should be carried out every two years. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They retain their full power for almost ten years – the loss is just ~1% (in theory),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Thanks to the shiny finish and nickel coating, they have an aesthetic appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their usage potential,
  • Wide application in new technology industries – they find application in HDDs, rotating machines, medical equipment along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and enhances its overall resistance,
  • They lose field intensity at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
  • Limited ability to create complex details in the magnet – the use of a external casing is recommended,
  • Potential hazard linked to microscopic shards may arise, in case of ingestion, which is notable in the family environments. Additionally, miniature parts from these products have the potential to complicate medical imaging once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given holding capacity of the magnet means the highest holding force, assessed in ideal conditions, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under parallel forces the load capacity is reduced by as much as 75%. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Handle with Care: Neodymium Magnets

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

 Keep neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets bounce and touch each other mutually within a radius of several to around 10 cm from each other.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are highly susceptible to damage, leading to breaking.

Magnets made of neodymium are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98