SM 18x250 [2xM5] / N42 - magnetic separator
magnetic separator
Catalog no 130275
GTIN: 5906301812777
Diameter Ø [±0,1 mm]
18 mm
Height [±0,1 mm]
250 mm
Weight
0.01 g
553.50 ZŁ with VAT / pcs + price for transport
450.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Pick up the phone and ask
+48 888 99 98 98
otherwise contact us via
our online form
through our site.
Lifting power as well as structure of a magnet can be analyzed using our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
SM 18x250 [2xM5] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable holding force, neodymium magnets have these key benefits:
- They retain their full power for around ten years – the drop is just ~1% (in theory),
- They show strong resistance to demagnetization from external field exposure,
- Because of the brilliant layer of silver, the component looks aesthetically refined,
- The outer field strength of the magnet shows remarkable magnetic properties,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to build),
- With the option for tailored forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Significant impact in cutting-edge sectors – they are utilized in hard drives, electromechanical systems, clinical machines along with sophisticated instruments,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of magnetic elements:
- They are fragile when subjected to a strong impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally increases its overall durability,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
- Potential hazard from tiny pieces may arise, when consumed by mistake, which is important in the context of child safety. Moreover, small elements from these products may disrupt scanning once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what it depends on?
The given holding capacity of the magnet means the highest holding force, determined in ideal conditions, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a small distance {between} the magnet and the plate lowers the lifting capacity.
Safety Precautions
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Neodymium magnets jump and clash mutually within a distance of several to almost 10 cm from each other.
Magnets made of neodymium are noted for being fragile, which can cause them to crumble.
Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Neodymium magnets should not be around children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Pay attention!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.