SM 18x250 [2xM5] / N42 - magnetic separator
magnetic separator
Catalog no 130275
GTIN: 5906301812777
Diameter Ø [±0,1 mm]
18 mm
Height [±0,1 mm]
250 mm
Weight
0.01 g
553.50 ZŁ with VAT / pcs + price for transport
450.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us
+48 888 99 98 98
if you prefer let us know by means of
our online form
the contact page.
Force and form of a magnet can be calculated on our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
SM 18x250 [2xM5] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
- They remain magnetized despite exposure to magnetic surroundings,
- Thanks to the polished finish and silver coating, they have an elegant appearance,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for precise shaping as well as customization to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Important function in advanced technical fields – they serve a purpose in computer drives, electromechanical systems, medical equipment along with sophisticated instruments,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They can break when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall robustness,
- They lose power at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment – during outdoor use, we recommend using waterproof magnets, such as those made of polymer,
- Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
- Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is important in the family environments. Furthermore, miniature parts from these magnets can hinder health screening when ingested,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum lifting capacity of the magnet – what it depends on?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in the best circumstances, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- in normal thermal conditions
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.
Safety Precautions
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are extremely fragile, resulting in breaking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Pay attention!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.
