tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. All "magnets" on our website are available for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for fishing F200 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight and durable enclosure are excellent for use in challenging weather, including during snow and rain more information...

magnetic holders

Holders with magnets can be applied to facilitate production processes, underwater discoveries, or locating meteors made of metal more...

Order always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x250 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130275

GTIN: 5906301812777

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

250 mm

Weight

0.01 g

553.50 with VAT / pcs + price for transport

450.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
450.00 ZŁ
553.50 ZŁ
price from 10 pcs
405.00 ZŁ
498.15 ZŁ

Need advice?

Call us +48 888 99 98 98 or let us know via form the contact form page.
Lifting power and appearance of a neodymium magnet can be verified with our online calculation tool.

Order by 14:00 and we’ll ship today!

SM 18x250 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x250 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130275
GTIN
5906301812777
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
250 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. As a result, it is possible to precisely remove ferromagnetic elements from the mixture. An important element of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in food production to clear metallic contaminants, for example iron fragments or iron dust. Our rods are made from acid-resistant steel, AISI 304, approved for contact with food.
Magnetic rollers, often called magnetic separators, are employed in metal separation, food production as well as waste processing. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the more effective. But, the effectiveness of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. By contrast, when the magnet is thick, the force lines are extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel is recommended thanks to its exceptional corrosion resistance.
Magnetic bars stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other devices that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Magnetic field measurements is recommended be carried out every two years. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong holding force, neodymium magnets have these key benefits:

  • Their magnetic field is maintained, and after around ten years, it drops only by ~1% (theoretically),
  • They are highly resistant to demagnetization caused by external field interference,
  • In other words, due to the metallic gold coating, the magnet obtains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Significant impact in new technology industries – they find application in HDDs, electric motors, medical equipment or even high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
  • Safety concern due to small fragments may arise, if ingested accidentally, which is notable in the protection of children. Moreover, miniature parts from these products might hinder health screening if inside the body,
  • Due to expensive raw materials, their cost is above average,

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, measured in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of lifting force in real conditions

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.

Handle Neodymium Magnets Carefully

Neodymium magnetic are delicate and can easily crack as well as get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will jump and also clash together within a radius of several to almost 10 cm from each other.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Warning!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98