MW 5x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010088
GTIN: 5906301810872
Diameter Ø [±0,1 mm]
5 mm
Height [±0,1 mm]
30 mm
Weight
4.42 g
Magnetization Direction
↑ axial
Load capacity
8.29 kg / 81.3 N
Magnetic Induction
616.32 mT
Coating
[NiCuNi] nickel
3.57 ZŁ with VAT / pcs + price for transport
2.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Contact us by phone
+48 22 499 98 98
or drop us a message using
contact form
our website.
Specifications along with form of a neodymium magnet can be calculated using our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
MW 5x30 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as epoxy, to shield them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (according to literature),
- Their ability to resist magnetic interference from external fields is notable,
- Thanks to the glossy finish and nickel coating, they have an aesthetic appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
- With the option for fine forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Wide application in advanced technical fields – they are used in HDDs, electromechanical systems, healthcare devices and technologically developed systems,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and additionally strengthens its overall durability,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
- Safety concern linked to microscopic shards may arise, in case of ingestion, which is important in the health of young users. Additionally, minuscule fragments from these magnets can interfere with diagnostics once in the system,
- Due to the price of neodymium, their cost is relatively high,
Maximum lifting force for a neodymium magnet – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, assessed in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a refined outer layer
- with zero air gap
- under perpendicular detachment force
- in normal thermal conditions
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.
Safety Guidelines with Neodymium Magnets
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnetic are characterized by being fragile, which can cause them to crumble.
Neodymium magnetic are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Be careful!
So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.