MW 5x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010088
GTIN/EAN: 5906301810872
Diameter Ø
5 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
4.42 g
Magnetization Direction
↑ axial
Load capacity
0.45 kg / 4.40 N
Magnetic Induction
616.32 mT / 6163 Gs
Coating
[NiCuNi] Nickel
3.57 ZŁ with VAT / pcs + price for transport
2.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
or drop us a message via
our online form
our website.
Lifting power as well as shape of magnetic components can be calculated on our
force calculator.
Orders submitted before 14:00 will be dispatched today!
Technical details - MW 5x30 / N38 - cylindrical magnet
Specification / characteristics - MW 5x30 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010088 |
| GTIN/EAN | 5906301810872 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 5 mm [±0,1 mm] |
| Height | 30 mm [±0,1 mm] |
| Weight | 4.42 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.45 kg / 4.40 N |
| Magnetic Induction ~ ? | 616.32 mT / 6163 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the assembly - report
These data are the outcome of a engineering analysis. Values are based on models for the class Nd2Fe14B. Actual conditions may differ. Use these calculations as a reference point during assembly planning.
Table 1: Static force (force vs distance) - power drop
MW 5x30 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
6154 Gs
615.4 mT
|
0.45 kg / 450.0 g
4.4 N
|
low risk |
| 1 mm |
3877 Gs
387.7 mT
|
0.18 kg / 178.6 g
1.8 N
|
low risk |
| 2 mm |
2308 Gs
230.8 mT
|
0.06 kg / 63.3 g
0.6 N
|
low risk |
| 3 mm |
1419 Gs
141.9 mT
|
0.02 kg / 23.9 g
0.2 N
|
low risk |
| 5 mm |
639 Gs
63.9 mT
|
0.00 kg / 4.8 g
0.0 N
|
low risk |
| 10 mm |
173 Gs
17.3 mT
|
0.00 kg / 0.4 g
0.0 N
|
low risk |
| 15 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
low risk |
| 20 mm |
40 Gs
4.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
low risk |
| 30 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
low risk |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
low risk |
Table 2: Shear force (vertical surface)
MW 5x30 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MW 5x30 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 135.0 g
1.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 90.0 g
0.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 45.0 g
0.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 225.0 g
2.2 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 5x30 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 45.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 112.5 g
1.1 N
|
| 2 mm |
|
0.23 kg / 225.0 g
2.2 N
|
| 5 mm |
|
0.45 kg / 450.0 g
4.4 N
|
| 10 mm |
|
0.45 kg / 450.0 g
4.4 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 5x30 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 450.0 g
4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 440.1 g
4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 430.2 g
4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 420.3 g
4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 320.4 g
3.1 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MW 5x30 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
4.58 kg / 4584 g
45.0 N
6 170 Gs
|
N/A |
| 1 mm |
2.98 kg / 2982 g
29.3 N
9 927 Gs
|
2.68 kg / 2684 g
26.3 N
~0 Gs
|
| 2 mm |
1.82 kg / 1820 g
17.9 N
7 755 Gs
|
1.64 kg / 1638 g
16.1 N
~0 Gs
|
| 3 mm |
1.08 kg / 1083 g
10.6 N
5 981 Gs
|
0.97 kg / 974 g
9.6 N
~0 Gs
|
| 5 mm |
0.39 kg / 391 g
3.8 N
3 595 Gs
|
0.35 kg / 352 g
3.5 N
~0 Gs
|
| 10 mm |
0.05 kg / 49 g
0.5 N
1 278 Gs
|
0.04 kg / 44 g
0.4 N
~0 Gs
|
| 20 mm |
0.00 kg / 4 g
0.0 N
346 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
49 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MW 5x30 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (cracking risk) - collision effects
MW 5x30 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
10.18 km/h
(2.83 m/s)
|
0.02 J | |
| 30 mm |
17.63 km/h
(4.90 m/s)
|
0.05 J | |
| 50 mm |
22.75 km/h
(6.32 m/s)
|
0.09 J | |
| 100 mm |
32.18 km/h
(8.94 m/s)
|
0.18 J |
Table 9: Surface protection spec
MW 5x30 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 5x30 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 468 Mx | 14.7 µWb |
| Pc Coefficient | 1.59 | High (Stable) |
Table 11: Hydrostatics and buoyancy
MW 5x30 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.45 kg | Standard |
| Water (riverbed) |
0.52 kg
(+0.07 kg Buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical surface, the magnet retains merely approx. 20-30% of its nominal pull.
2. Steel thickness impact
*Thin metal sheet (e.g. computer case) significantly reduces the holding force.
3. Power loss vs temp
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.59
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Advantages as well as disadvantages of rare earth magnets.
Pros
- They do not lose strength, even after approximately ten years – the reduction in lifting capacity is only ~1% (according to tests),
- Neodymium magnets are exceptionally resistant to loss of magnetic properties caused by external magnetic fields,
- The use of an shiny layer of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- They feature high magnetic induction at the operating surface, which increases their power,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Considering the option of free molding and customization to specialized requirements, NdFeB magnets can be produced in a broad palette of shapes and sizes, which increases their versatility,
- Versatile presence in electronics industry – they find application in mass storage devices, drive modules, medical equipment, and multitasking production systems.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Weaknesses
- At strong impacts they can crack, therefore we recommend placing them in strong housings. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- Neodymium magnets lose their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material immune to moisture, when using outdoors
- We recommend a housing - magnetic mechanism, due to difficulties in realizing threads inside the magnet and complicated forms.
- Potential hazard related to microscopic parts of magnets pose a threat, in case of ingestion, which is particularly important in the aspect of protecting the youngest. Additionally, tiny parts of these magnets are able to disrupt the diagnostic process medical when they are in the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which can limit application in large quantities
Pull force analysis
Maximum lifting force for a neodymium magnet – what affects it?
- with the contact of a sheet made of special test steel, ensuring maximum field concentration
- with a cross-section of at least 10 mm
- with a surface free of scratches
- with total lack of distance (no paint)
- during pulling in a direction vertical to the mounting surface
- in stable room temperature
Key elements affecting lifting force
- Gap between surfaces – even a fraction of a millimeter of separation (caused e.g. by varnish or dirt) significantly weakens the pulling force, often by half at just 0.5 mm.
- Force direction – note that the magnet has greatest strength perpendicularly. Under sliding down, the holding force drops significantly, often to levels of 20-30% of the maximum value.
- Element thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Steel type – low-carbon steel gives the best results. Alloy admixtures reduce magnetic permeability and holding force.
- Surface condition – ground elements guarantee perfect abutment, which increases force. Rough surfaces reduce efficiency.
- Thermal factor – hot environment weakens pulling force. Exceeding the limit temperature can permanently damage the magnet.
Lifting capacity was measured with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the lifting capacity is smaller. In addition, even a slight gap between the magnet and the plate decreases the load capacity.
Safety rules for work with NdFeB magnets
GPS and phone interference
A strong magnetic field interferes with the operation of compasses in smartphones and GPS navigation. Keep magnets near a device to prevent damaging the sensors.
Fire risk
Drilling and cutting of NdFeB material poses a fire hazard. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.
Safe operation
Before starting, read the rules. Sudden snapping can break the magnet or injure your hand. Think ahead.
Pinching danger
Big blocks can break fingers instantly. Do not place your hand between two attracting surfaces.
Permanent damage
Control the heat. Exposing the magnet to high heat will permanently weaken its properties and strength.
This is not a toy
Adult use only. Small elements pose a choking risk, leading to intestinal necrosis. Store away from kids and pets.
Keep away from computers
Powerful magnetic fields can destroy records on credit cards, hard drives, and storage devices. Keep a distance of at least 10 cm.
Fragile material
Despite metallic appearance, neodymium is delicate and cannot withstand shocks. Do not hit, as the magnet may crumble into sharp, dangerous pieces.
Nickel coating and allergies
A percentage of the population experience a hypersensitivity to Ni, which is the typical protective layer for neodymium magnets. Prolonged contact can result in dermatitis. It is best to use safety gloves.
Pacemakers
People with a pacemaker must maintain an absolute distance from magnets. The magnetism can interfere with the operation of the implant.
