e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for searching F200 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight and durable enclosure are perfect for use in challenging climate conditions, including in the rain and snow see...

magnets with holders

Magnetic holders can be applied to improve production processes, underwater discoveries, or locating meteors made of ore more information...

We promise to ship your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010088

GTIN: 5906301810872

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

30 mm

Weight

4.42 g

Magnetization Direction

↑ axial

Load capacity

8.29 kg / 81.3 N

Magnetic Induction

616.32 mT

Coating

[NiCuNi] nickel

3.57 with VAT / pcs + price for transport

2.90 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.90 ZŁ
3.57 ZŁ
price from 207 pcs
2.90 ZŁ
3.57 ZŁ
price from 863 pcs
2.90 ZŁ
3.57 ZŁ

Hunting for a discount?

Call us +48 888 99 98 98 alternatively drop us a message via our online form our website.
Weight and structure of magnets can be checked using our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

MW 5x30 / N38 - cylindrical magnet

Specification/characteristics MW 5x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010088
GTIN
5906301810872
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
4.42 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
8.29 kg / 81.3 N
Magnetic Induction ~ ?
616.32 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 5x30 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform traditional iron magnets. Thanks to their strength, they are frequently employed in products that require strong adhesion. The typical temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet with the designation MW 5x30 / N38 and a magnetic force 8.29 kg has a weight of only 4.42 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information and offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also pose certain dangers. Due to their significant magnetic power, they can pull metallic objects with great force, which can lead to crushing skin or other surfaces, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then forming and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as nickel, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A neodymium magnet with classification N50 and N52 is a powerful and highly strong magnetic product with the shape of a cylinder, that offers high force and versatile application. Good price, fast shipping, resistance and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable strength, neodymium magnets offer the following advantages:

  • They retain their attractive force for nearly ten years – the loss is just ~1% (in theory),
  • They protect against demagnetization induced by external electromagnetic environments remarkably well,
  • The use of a mirror-like silver surface provides a eye-catching finish,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Wide application in modern technologies – they are utilized in HDDs, electromechanical systems, clinical machines and high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of NdFeB magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture while also reinforces its overall resistance,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment – during outdoor use, we recommend using sealed magnets, such as those made of rubber,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Health risk from tiny pieces may arise, especially if swallowed, which is notable in the context of child safety. Moreover, miniature parts from these magnets can disrupt scanning after being swallowed,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Exercise Caution with Neodymium Magnets

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or even a fracture.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are characterized by being fragile, which can cause them to become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

 Keep neodymium magnets far from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Caution!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98