MW 5x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010088
GTIN/EAN: 5906301810872
Diameter Ø
5 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
4.42 g
Magnetization Direction
↑ axial
Load capacity
0.45 kg / 4.40 N
Magnetic Induction
616.32 mT / 6163 Gs
Coating
[NiCuNi] Nickel
3.57 ZŁ with VAT / pcs + price for transport
2.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
if you prefer drop us a message via
request form
the contact page.
Strength along with appearance of a neodymium magnet can be checked with our
magnetic calculator.
Same-day processing for orders placed before 14:00.
Technical of the product - MW 5x30 / N38 - cylindrical magnet
Specification / characteristics - MW 5x30 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010088 |
| GTIN/EAN | 5906301810872 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 5 mm [±0,1 mm] |
| Height | 30 mm [±0,1 mm] |
| Weight | 4.42 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.45 kg / 4.40 N |
| Magnetic Induction ~ ? | 616.32 mT / 6163 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical simulation of the magnet - technical parameters
These information constitute the direct effect of a mathematical simulation. Values rely on models for the class Nd2Fe14B. Real-world performance may deviate from the simulation results. Please consider these calculations as a supplementary guide for designers.
Table 1: Static force (force vs distance) - interaction chart
MW 5x30 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
6154 Gs
615.4 mT
|
0.45 kg / 0.99 LBS
450.0 g / 4.4 N
|
weak grip |
| 1 mm |
3877 Gs
387.7 mT
|
0.18 kg / 0.39 LBS
178.6 g / 1.8 N
|
weak grip |
| 2 mm |
2308 Gs
230.8 mT
|
0.06 kg / 0.14 LBS
63.3 g / 0.6 N
|
weak grip |
| 3 mm |
1419 Gs
141.9 mT
|
0.02 kg / 0.05 LBS
23.9 g / 0.2 N
|
weak grip |
| 5 mm |
639 Gs
63.9 mT
|
0.00 kg / 0.01 LBS
4.8 g / 0.0 N
|
weak grip |
| 10 mm |
173 Gs
17.3 mT
|
0.00 kg / 0.00 LBS
0.4 g / 0.0 N
|
weak grip |
| 15 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 LBS
0.1 g / 0.0 N
|
weak grip |
| 20 mm |
40 Gs
4.0 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
weak grip |
Table 2: Sliding force (vertical surface)
MW 5x30 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 0.20 LBS
90.0 g / 0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.08 LBS
36.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.03 LBS
12.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.01 LBS
4.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MW 5x30 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 0.30 LBS
135.0 g / 1.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 0.20 LBS
90.0 g / 0.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 0.10 LBS
45.0 g / 0.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 0.50 LBS
225.0 g / 2.2 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 5x30 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 0.10 LBS
45.0 g / 0.4 N
|
| 1 mm |
|
0.11 kg / 0.25 LBS
112.5 g / 1.1 N
|
| 2 mm |
|
0.23 kg / 0.50 LBS
225.0 g / 2.2 N
|
| 3 mm |
|
0.34 kg / 0.74 LBS
337.5 g / 3.3 N
|
| 5 mm |
|
0.45 kg / 0.99 LBS
450.0 g / 4.4 N
|
| 10 mm |
|
0.45 kg / 0.99 LBS
450.0 g / 4.4 N
|
| 11 mm |
|
0.45 kg / 0.99 LBS
450.0 g / 4.4 N
|
| 12 mm |
|
0.45 kg / 0.99 LBS
450.0 g / 4.4 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 5x30 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 0.99 LBS
450.0 g / 4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 0.97 LBS
440.1 g / 4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 0.95 LBS
430.2 g / 4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 0.93 LBS
420.3 g / 4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 0.71 LBS
320.4 g / 3.1 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 5x30 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.58 kg / 10.11 LBS
6 170 Gs
|
0.69 kg / 1.52 LBS
688 g / 6.7 N
|
N/A |
| 1 mm |
2.98 kg / 6.57 LBS
9 927 Gs
|
0.45 kg / 0.99 LBS
447 g / 4.4 N
|
2.68 kg / 5.92 LBS
~0 Gs
|
| 2 mm |
1.82 kg / 4.01 LBS
7 755 Gs
|
0.27 kg / 0.60 LBS
273 g / 2.7 N
|
1.64 kg / 3.61 LBS
~0 Gs
|
| 3 mm |
1.08 kg / 2.39 LBS
5 981 Gs
|
0.16 kg / 0.36 LBS
162 g / 1.6 N
|
0.97 kg / 2.15 LBS
~0 Gs
|
| 5 mm |
0.39 kg / 0.86 LBS
3 595 Gs
|
0.06 kg / 0.13 LBS
59 g / 0.6 N
|
0.35 kg / 0.78 LBS
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 LBS
1 278 Gs
|
0.01 kg / 0.02 LBS
7 g / 0.1 N
|
0.04 kg / 0.10 LBS
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 LBS
346 Gs
|
0.00 kg / 0.00 LBS
1 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
49 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
32 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
22 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
16 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
12 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
9 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MW 5x30 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MW 5x30 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
10.18 km/h
(2.83 m/s)
|
0.02 J | |
| 30 mm |
17.63 km/h
(4.90 m/s)
|
0.05 J | |
| 50 mm |
22.75 km/h
(6.32 m/s)
|
0.09 J | |
| 100 mm |
32.18 km/h
(8.94 m/s)
|
0.18 J |
Table 9: Coating parameters (durability)
MW 5x30 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 5x30 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 468 Mx | 14.7 µWb |
| Pc Coefficient | 1.59 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 5x30 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.45 kg | Standard |
| Water (riverbed) |
0.52 kg
(+0.07 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Caution: On a vertical wall, the magnet retains only ~20% of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. 0.5mm PC case) severely reduces the holding force.
3. Thermal stability
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.59
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths and weaknesses of rare earth magnets.
Pros
- Their strength remains stable, and after around ten years it drops only by ~1% (according to research),
- Magnets very well defend themselves against loss of magnetization caused by ambient magnetic noise,
- In other words, due to the glossy finish of nickel, the element becomes visually attractive,
- Magnetic induction on the top side of the magnet is maximum,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Possibility of accurate creating as well as adjusting to individual needs,
- Universal use in future technologies – they serve a role in computer drives, drive modules, advanced medical instruments, also other advanced devices.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Disadvantages
- They are prone to damage upon too strong impacts. To avoid cracks, it is worth protecting magnets in special housings. Such protection not only shields the magnet but also increases its resistance to damage
- When exposed to high temperature, neodymium magnets experience a drop in strength. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Limited ability of making threads in the magnet and complicated forms - preferred is cover - magnet mounting.
- Possible danger to health – tiny shards of magnets pose a threat, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Additionally, small components of these products can complicate diagnosis medical after entering the body.
- With budget limitations the cost of neodymium magnets can be a barrier,
Pull force analysis
Magnetic strength at its maximum – what it depends on?
- with the contact of a sheet made of special test steel, guaranteeing full magnetic saturation
- possessing a massiveness of at least 10 mm to ensure full flux closure
- with an ground touching surface
- without any air gap between the magnet and steel
- for force acting at a right angle (pull-off, not shear)
- at ambient temperature approx. 20 degrees Celsius
Practical lifting capacity: influencing factors
- Gap (betwixt the magnet and the metal), as even a microscopic clearance (e.g. 0.5 mm) leads to a reduction in lifting capacity by up to 50% (this also applies to varnish, rust or dirt).
- Pull-off angle – remember that the magnet holds strongest perpendicularly. Under shear forces, the capacity drops drastically, often to levels of 20-30% of the maximum value.
- Wall thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of generating force.
- Metal type – different alloys reacts the same. High carbon content worsen the attraction effect.
- Surface finish – ideal contact is possible only on smooth steel. Any scratches and bumps create air cushions, reducing force.
- Temperature – heating the magnet causes a temporary drop of force. Check the maximum operating temperature for a given model.
Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the holding force is lower. Additionally, even a slight gap between the magnet’s surface and the plate lowers the holding force.
Warnings
Metal Allergy
It is widely known that nickel (standard magnet coating) is a potent allergen. If your skin reacts to metals, prevent touching magnets with bare hands or select coated magnets.
Physical harm
Danger of trauma: The attraction force is so great that it can result in blood blisters, crushing, and even bone fractures. Protective gloves are recommended.
Adults only
These products are not toys. Swallowing multiple magnets may result in them connecting inside the digestive tract, which constitutes a direct threat to life and requires immediate surgery.
Threat to electronics
Avoid bringing magnets near a purse, computer, or screen. The magnetism can irreversibly ruin these devices and wipe information from cards.
Warning for heart patients
People with a pacemaker have to keep an absolute distance from magnets. The magnetic field can stop the operation of the life-saving device.
Caution required
Before starting, read the rules. Uncontrolled attraction can break the magnet or injure your hand. Think ahead.
Eye protection
NdFeB magnets are ceramic materials, meaning they are fragile like glass. Clashing of two magnets will cause them cracking into small pieces.
Do not overheat magnets
Monitor thermal conditions. Heating the magnet to high heat will permanently weaken its properties and strength.
GPS Danger
Be aware: rare earth magnets produce a field that confuses sensitive sensors. Maintain a separation from your mobile, tablet, and navigation systems.
Combustion hazard
Mechanical processing of neodymium magnets poses a fire risk. Magnetic powder oxidizes rapidly with oxygen and is difficult to extinguish.
