MW 5x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010088
GTIN/EAN: 5906301810872
Diameter Ø
5 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
4.42 g
Magnetization Direction
↑ axial
Load capacity
0.45 kg / 4.40 N
Magnetic Induction
616.32 mT / 6163 Gs
Coating
[NiCuNi] Nickel
3.57 ZŁ with VAT / pcs + price for transport
2.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
or contact us via
request form
our website.
Force along with structure of neodymium magnets can be tested on our
power calculator.
Same-day shipping for orders placed before 14:00.
Technical specification of the product - MW 5x30 / N38 - cylindrical magnet
Specification / characteristics - MW 5x30 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010088 |
| GTIN/EAN | 5906301810872 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 5 mm [±0,1 mm] |
| Height | 30 mm [±0,1 mm] |
| Weight | 4.42 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.45 kg / 4.40 N |
| Magnetic Induction ~ ? | 616.32 mT / 6163 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the assembly - report
These information constitute the result of a mathematical analysis. Results are based on algorithms for the class Nd2Fe14B. Operational conditions may deviate from the simulation results. Use these calculations as a reference point when designing systems.
Table 1: Static force (pull vs gap) - interaction chart
MW 5x30 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
6154 Gs
615.4 mT
|
0.45 kg / 0.99 pounds
450.0 g / 4.4 N
|
low risk |
| 1 mm |
3877 Gs
387.7 mT
|
0.18 kg / 0.39 pounds
178.6 g / 1.8 N
|
low risk |
| 2 mm |
2308 Gs
230.8 mT
|
0.06 kg / 0.14 pounds
63.3 g / 0.6 N
|
low risk |
| 3 mm |
1419 Gs
141.9 mT
|
0.02 kg / 0.05 pounds
23.9 g / 0.2 N
|
low risk |
| 5 mm |
639 Gs
63.9 mT
|
0.00 kg / 0.01 pounds
4.8 g / 0.0 N
|
low risk |
| 10 mm |
173 Gs
17.3 mT
|
0.00 kg / 0.00 pounds
0.4 g / 0.0 N
|
low risk |
| 15 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 pounds
0.1 g / 0.0 N
|
low risk |
| 20 mm |
40 Gs
4.0 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 30 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
Table 2: Shear capacity (wall)
MW 5x30 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 0.20 pounds
90.0 g / 0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.08 pounds
36.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.03 pounds
12.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.01 pounds
4.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MW 5x30 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 0.30 pounds
135.0 g / 1.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 0.20 pounds
90.0 g / 0.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 0.10 pounds
45.0 g / 0.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 0.50 pounds
225.0 g / 2.2 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MW 5x30 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 0.10 pounds
45.0 g / 0.4 N
|
| 1 mm |
|
0.11 kg / 0.25 pounds
112.5 g / 1.1 N
|
| 2 mm |
|
0.23 kg / 0.50 pounds
225.0 g / 2.2 N
|
| 3 mm |
|
0.34 kg / 0.74 pounds
337.5 g / 3.3 N
|
| 5 mm |
|
0.45 kg / 0.99 pounds
450.0 g / 4.4 N
|
| 10 mm |
|
0.45 kg / 0.99 pounds
450.0 g / 4.4 N
|
| 11 mm |
|
0.45 kg / 0.99 pounds
450.0 g / 4.4 N
|
| 12 mm |
|
0.45 kg / 0.99 pounds
450.0 g / 4.4 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 5x30 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 0.99 pounds
450.0 g / 4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 0.97 pounds
440.1 g / 4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 0.95 pounds
430.2 g / 4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 0.93 pounds
420.3 g / 4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 0.71 pounds
320.4 g / 3.1 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MW 5x30 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.58 kg / 10.11 pounds
6 170 Gs
|
0.69 kg / 1.52 pounds
688 g / 6.7 N
|
N/A |
| 1 mm |
2.98 kg / 6.57 pounds
9 927 Gs
|
0.45 kg / 0.99 pounds
447 g / 4.4 N
|
2.68 kg / 5.92 pounds
~0 Gs
|
| 2 mm |
1.82 kg / 4.01 pounds
7 755 Gs
|
0.27 kg / 0.60 pounds
273 g / 2.7 N
|
1.64 kg / 3.61 pounds
~0 Gs
|
| 3 mm |
1.08 kg / 2.39 pounds
5 981 Gs
|
0.16 kg / 0.36 pounds
162 g / 1.6 N
|
0.97 kg / 2.15 pounds
~0 Gs
|
| 5 mm |
0.39 kg / 0.86 pounds
3 595 Gs
|
0.06 kg / 0.13 pounds
59 g / 0.6 N
|
0.35 kg / 0.78 pounds
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 pounds
1 278 Gs
|
0.01 kg / 0.02 pounds
7 g / 0.1 N
|
0.04 kg / 0.10 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 pounds
346 Gs
|
0.00 kg / 0.00 pounds
1 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
49 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
32 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
22 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
16 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
12 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
9 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MW 5x30 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - collision effects
MW 5x30 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
10.18 km/h
(2.83 m/s)
|
0.02 J | |
| 30 mm |
17.63 km/h
(4.90 m/s)
|
0.05 J | |
| 50 mm |
22.75 km/h
(6.32 m/s)
|
0.09 J | |
| 100 mm |
32.18 km/h
(8.94 m/s)
|
0.18 J |
Table 9: Corrosion resistance
MW 5x30 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 5x30 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 468 Mx | 14.7 µWb |
| Pc Coefficient | 1.59 | High (Stable) |
Table 11: Physics of underwater searching
MW 5x30 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.45 kg | Standard |
| Water (riverbed) |
0.52 kg
(+0.07 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Note: On a vertical surface, the magnet holds only a fraction of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) severely reduces the holding force.
3. Power loss vs temp
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.59
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also proposals
Pros as well as cons of neodymium magnets.
Pros
- They do not lose magnetism, even during approximately 10 years – the reduction in strength is only ~1% (theoretically),
- They have excellent resistance to magnetism drop due to external fields,
- The use of an aesthetic finish of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- Magnetic induction on the top side of the magnet remains very high,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Possibility of precise modeling and modifying to atypical applications,
- Versatile presence in electronics industry – they are utilized in computer drives, brushless drives, medical equipment, also other advanced devices.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in small dimensions, which allows their use in small systems
Cons
- Susceptibility to cracking is one of their disadvantages. Upon intense impact they can fracture. We advise keeping them in a strong case, which not only protects them against impacts but also raises their durability
- Neodymium magnets lose power when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of strength (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material resistant to moisture, in case of application outdoors
- We suggest casing - magnetic mechanism, due to difficulties in producing threads inside the magnet and complicated shapes.
- Possible danger to health – tiny shards of magnets can be dangerous, in case of ingestion, which gains importance in the context of child health protection. Furthermore, small elements of these devices can be problematic in diagnostics medical after entering the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which hinders application in large quantities
Lifting parameters
Best holding force of the magnet in ideal parameters – what contributes to it?
- using a base made of high-permeability steel, functioning as a circuit closing element
- possessing a massiveness of minimum 10 mm to ensure full flux closure
- with a surface perfectly flat
- without the slightest air gap between the magnet and steel
- under perpendicular force vector (90-degree angle)
- at temperature room level
Determinants of practical lifting force of a magnet
- Space between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by veneer or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
- Angle of force application – highest force is reached only during perpendicular pulling. The force required to slide of the magnet along the plate is usually several times lower (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of generating force.
- Material composition – different alloys attracts identically. High carbon content worsen the interaction with the magnet.
- Base smoothness – the smoother and more polished the plate, the better the adhesion and stronger the hold. Unevenness acts like micro-gaps.
- Operating temperature – NdFeB sinters have a negative temperature coefficient. When it is hot they are weaker, and in frost they can be stronger (up to a certain limit).
Lifting capacity was assessed using a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under shearing force the lifting capacity is smaller. In addition, even a small distance between the magnet and the plate reduces the load capacity.
Safety rules for work with neodymium magnets
Keep away from electronics
A powerful magnetic field negatively affects the operation of compasses in phones and GPS navigation. Maintain magnets close to a smartphone to prevent damaging the sensors.
Allergic reactions
Allergy Notice: The Ni-Cu-Ni coating consists of nickel. If an allergic reaction occurs, immediately stop working with magnets and wear gloves.
Thermal limits
Do not overheat. Neodymium magnets are susceptible to temperature. If you require resistance above 80°C, inquire about HT versions (H, SH, UH).
Physical harm
Protect your hands. Two powerful magnets will join instantly with a force of several hundred kilograms, crushing everything in their path. Be careful!
Warning for heart patients
Patients with a heart stimulator should maintain an large gap from magnets. The magnetic field can stop the functioning of the implant.
Protect data
Avoid bringing magnets close to a purse, computer, or screen. The magnetism can permanently damage these devices and wipe information from cards.
Fire risk
Mechanical processing of NdFeB material carries a risk of fire risk. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Respect the power
Before starting, read the rules. Sudden snapping can destroy the magnet or injure your hand. Be predictive.
Risk of cracking
Neodymium magnets are sintered ceramics, meaning they are very brittle. Collision of two magnets will cause them shattering into small pieces.
This is not a toy
NdFeB magnets are not suitable for play. Accidental ingestion of multiple magnets can lead to them pinching intestinal walls, which constitutes a critical condition and requires urgent medical intervention.
