tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. Practically all magnesy in our store are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight and durable steel casing are perfect for use in variable and difficult weather conditions, including during snow and rain see more...

magnetic holders

Magnetic holders can be used to facilitate production processes, exploring underwater areas, or finding space rocks from gold more...

Order always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010088

GTIN: 5906301810872

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

30 mm

Weight

4.42 g

Magnetization Direction

↑ axial

Load capacity

8.29 kg / 81.3 N

Magnetic Induction

616.32 mT

Coating

[NiCuNi] nickel

3.57 with VAT / pcs + price for transport

2.90 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.90 ZŁ
3.57 ZŁ
price from 250 pcs
2.73 ZŁ
3.35 ZŁ
price from 900 pcs
2.55 ZŁ
3.14 ZŁ

Want to talk magnets?

Call us now +48 888 99 98 98 alternatively send us a note by means of form the contact section.
Force along with appearance of magnets can be checked using our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 5x30 / N38 - cylindrical magnet

Specification/characteristics MW 5x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010088
GTIN
5906301810872
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
4.42 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
8.29 kg / 81.3 N
Magnetic Induction ~ ?
616.32 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 5x30 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform ordinary ferrite magnets. Because of their power, they are frequently used in products that need powerful holding. The typical temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 5x30 / N38 and a magnetic strength 8.29 kg weighs only 4.42 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the latest information and offers, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very useful in various applications, they can also pose certain dangers. Due to their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin or other surfaces, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with other metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as nickel, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet with classification N50 and N52 is a powerful and highly strong metallic component in the form of a cylinder, featuring strong holding power and broad usability. Good price, availability, stability and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They do not lose their power approximately ten years – the reduction of strength is only ~1% (according to tests),
  • They show exceptional resistance to demagnetization from external magnetic fields,
  • Because of the lustrous layer of gold, the component looks visually appealing,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for tailored forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Wide application in new technology industries – they find application in computer drives, rotating machines, healthcare devices along with other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in compact constructions

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment, especially when used outside, we recommend using encapsulated magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Possible threat due to small fragments may arise, especially if swallowed, which is significant in the family environments. Moreover, small elements from these assemblies can hinder health screening if inside the body,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Maximum magnetic pulling forcewhat contributes to it?

The given pulling force of the magnet represents the maximum force, measured under optimal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet is influenced by in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the load capacity is reduced by as much as 75%. Moreover, even a minimal clearance {between} the magnet and the plate decreases the holding force.

Be Cautious with Neodymium Magnets

 Maintain neodymium magnets away from children.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnetic are fragile as well as can easily break as well as shatter.

Magnets made of neodymium are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets will bounce and touch together within a distance of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Be careful!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98