MW 5x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010088
GTIN: 5906301810872
Diameter Ø [±0,1 mm]
5 mm
Height [±0,1 mm]
30 mm
Weight
4.42 g
Magnetization Direction
↑ axial
Load capacity
8.29 kg / 81.3 N
Magnetic Induction
616.32 mT
Coating
[NiCuNi] nickel
3.57 ZŁ with VAT / pcs + price for transport
2.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Give us a call
+48 888 99 98 98
alternatively get in touch through
our online form
the contact form page.
Specifications and appearance of a magnet can be analyzed using our
magnetic calculator.
Order by 14:00 and we’ll ship today!
MW 5x30 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense strength, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
- They protect against demagnetization induced by ambient magnetic influence effectively,
- Thanks to the shiny finish and nickel coating, they have an aesthetic appearance,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to form),
- With the option for customized forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Wide application in modern technologies – they serve a purpose in data storage devices, rotating machines, clinical machines or even sophisticated instruments,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,
Disadvantages of neodymium magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also reinforces its overall robustness,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is restricted,
- Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is significant in the protection of children. Additionally, miniature parts from these assemblies can interfere with diagnostics when ingested,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Detachment force of the magnet in optimal conditions – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, measured in a perfect environment, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Key elements affecting lifting force
In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.
Handle Neodymium Magnets Carefully
Neodymium magnets are highly delicate, they easily crack and can become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets far from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
If joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Warning!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
