e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe on our website are available for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight and durable enclosure are ideally suited for use in difficult climate conditions, including in the rain and snow check...

magnets with holders

Magnetic holders can be used to facilitate manufacturing, underwater exploration, or searching for meteorites made of metal read...

We promise to ship your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 70x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010096

GTIN: 5906301810957

5

Diameter Ø [±0,1 mm]

70 mm

Height [±0,1 mm]

30 mm

Weight

865.9 g

Magnetization Direction

↑ axial

Load capacity

116.12 kg / 1138.75 N

Magnetic Induction

403.43 mT

Coating

[NiCuNi] nickel

317.17 with VAT / pcs + price for transport

257.86 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
257.86 ZŁ
317.17 ZŁ
price from 5 pcs
242.39 ZŁ
298.14 ZŁ
price from 10 pcs
226.92 ZŁ
279.11 ZŁ

Want to negotiate?

Pick up the phone and ask +48 888 99 98 98 alternatively drop us a message via form the contact page.
Lifting power as well as structure of a magnet can be verified with our modular calculator.

Orders submitted before 14:00 will be dispatched today!

MW 70x30 / N38 - cylindrical magnet

Specification/characteristics MW 70x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010096
GTIN
5906301810957
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
70 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
865.9 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
116.12 kg / 1138.75 N
Magnetic Induction ~ ?
403.43 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 70x30 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform ordinary ferrite magnets. Because of their power, they are frequently used in devices that need strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet with the designation MW 70x30 / N38 and a magnetic force 116.12 kg weighs only 865.9 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the site for the current information as well as promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in many applications, they can also pose certain risk. Due to their significant magnetic power, they can pull metallic objects with great force, which can lead to crushing skin and other surfaces, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as silver, to shield them from external factors and prolong their durability. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical neodymium magnet with classification N50 and N52 is a powerful and strong magnetic product with the shape of a cylinder, providing strong holding power and universal applicability. Attractive price, 24h delivery, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They have unchanged lifting capacity, and over nearly 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They protect against demagnetization induced by ambient electromagnetic environments effectively,
  • In other words, due to the glossy silver coating, the magnet obtains an professional appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
  • Key role in modern technologies – they serve a purpose in computer drives, electric drives, healthcare devices along with technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which allows for use in miniature devices

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Possible threat due to small fragments may arise, when consumed by mistake, which is crucial in the protection of children. Additionally, minuscule fragments from these assemblies have the potential to complicate medical imaging when ingested,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given pulling force of the magnet corresponds to the maximum force, assessed under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate reduces the holding force.

Exercise Caution with Neodymium Magnets

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are extremely fragile, leading to their cracking.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

  Neodymium magnets should not be in the vicinity youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98