MW 70x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010096
GTIN: 5906301810957
Diameter Ø [±0,1 mm]
70 mm
Height [±0,1 mm]
30 mm
Weight
865.9 g
Magnetization Direction
↑ axial
Load capacity
116.12 kg / 1138.75 N
Magnetic Induction
403.43 mT
Coating
[NiCuNi] nickel
317.17 ZŁ with VAT / pcs + price for transport
257.86 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 888 99 98 98
if you prefer contact us using
request form
through our site.
Weight and structure of magnets can be calculated on our
our magnetic calculator.
Order by 14:00 and we’ll ship today!
MW 70x30 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as nickel, to shield them from environmental factors and prolong their durability. Temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- Their magnetic field remains stable, and after approximately ten years, it drops only by ~1% (theoretically),
- They show exceptional resistance to demagnetization from external magnetic fields,
- The use of a mirror-like silver surface provides a refined finish,
- They have very high magnetic induction on the surface of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Wide application in cutting-edge sectors – they are used in computer drives, electric drives, clinical machines and sophisticated instruments,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of rare earth magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall durability,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of rubber,
- Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
- Possible threat due to small fragments may arise, when consumed by mistake, which is crucial in the context of child safety. Furthermore, miniature parts from these devices can complicate medical imaging if inside the body,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Best holding force of the magnet in ideal parameters – what it depends on?
The given holding capacity of the magnet means the highest holding force, measured in the best circumstances, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- under standard ambient temperature
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.
Exercise Caution with Neodymium Magnets
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are particularly fragile, resulting in shattering.
Magnets made of neodymium are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Neodymium magnets jump and also clash mutually within a distance of several to around 10 cm from each other.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Caution!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.