MPL 40x10x5 / N38 - neodymium magnet
lamellar magnet
catalog number 020152
GTIN: 5906301811589
length
40
mm [±0,1 mm]
width
10
mm [±0,1 mm]
height
5
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
7.90 kg / 77.47 N
magnetic induction ~
321.37 mT / 3,214 Gs
max. temperature
≤ 80
°C
catalog number 020152
GTIN: 5906301811589
length
40 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
7.90 kg / 77.47 N
magnetic induction ~
321.37 mT / 3,214 Gs
max. temperature
≤ 80 °C
4.85 ZŁ gross price (including VAT) / pcs +
3.94 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Don't know what to buy?
Call us tel: +48 22 499 98 98 or contact us through form on the contact page. You can check the lifting capacity as well as the appearance of neodymium magnets in our magnetic calculator magnetic mass calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 40x10x5 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Thanks to their mighty power, flat magnets are frequently applied in devices that need exceptional adhesion.
Typical temperature resistance of flat magnets is 80°C, but depending on the dimensions, this value rises.
In addition, flat magnets commonly have different coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet named MPL 40x10x5 / N38 i.e. a magnetic force 7.90 kg weighing only 15.00 grams, making it the ideal choice for applications requiring a flat shape.
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often applied in many devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: This form's flat shape makes mounting, especially when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits creators a lot of flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, reducing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet is dependent on the given use and requirements. In some cases, other shapes, like cylindrical or spherical, may be more appropriate.
Magnets have two poles: north (N) and south (S), which attract each other when they are different. Similar poles, e.g. two north poles, repel each other.
Due to these properties, magnets are commonly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to exercise caution when using magnets.
Choose recommended products
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from immense strength, neodymium magnets have the following advantages:
- They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
- They are highly resistant to demagnetization by external magnetic sources,
- In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
- They have exceptionally high magnetic induction on the surface of the magnet,
- By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
- Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
- Significant importance in modern technologies – find application in HDD drives, electric drive mechanisms, medical apparatus and various technologically advanced devices.
Disadvantages of neodymium magnets:
- They can break as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
- High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
- Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
- The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
- Potential hazard to health from tiny fragments of magnets can be dangerous, when accidentally ingested, which becomes significant in the context of children's health. Additionally, small elements of these products are able to complicate diagnosis after entering the body.
Be Cautious with Neodymium Magnets
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will crack or alternatively crumble with uncontrolled connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnetic are noted for being fragile, which can cause them to become damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
To show why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.