MPL 40x10x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020152
GTIN/EAN: 5906301811589
length
40 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
15 g
Magnetization Direction
↑ axial
Load capacity
11.85 kg / 116.27 N
Magnetic Induction
321.37 mT / 3214 Gs
Coating
[NiCuNi] Nickel
6.03 ZŁ with VAT / pcs + price for transport
4.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
if you prefer contact us via
inquiry form
the contact page.
Parameters along with structure of a magnet can be reviewed on our
power calculator.
Order by 14:00 and we’ll ship today!
Technical specification - MPL 40x10x5 / N38 - lamellar magnet
Specification / characteristics - MPL 40x10x5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020152 |
| GTIN/EAN | 5906301811589 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 15 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 11.85 kg / 116.27 N |
| Magnetic Induction ~ ? | 321.37 mT / 3214 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the magnet - technical parameters
Presented data constitute the direct effect of a engineering calculation. Values are based on models for the class Nd2Fe14B. Actual conditions may differ from theoretical values. Treat these calculations as a reference point during assembly planning.
Table 1: Static pull force (pull vs gap) - power drop
MPL 40x10x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3212 Gs
321.2 mT
|
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
|
dangerous! |
| 1 mm |
2791 Gs
279.1 mT
|
8.95 kg / 19.73 LBS
8947.7 g / 87.8 N
|
warning |
| 2 mm |
2358 Gs
235.8 mT
|
6.38 kg / 14.08 LBS
6384.9 g / 62.6 N
|
warning |
| 3 mm |
1965 Gs
196.5 mT
|
4.43 kg / 9.77 LBS
4432.4 g / 43.5 N
|
warning |
| 5 mm |
1360 Gs
136.0 mT
|
2.12 kg / 4.68 LBS
2122.9 g / 20.8 N
|
warning |
| 10 mm |
615 Gs
61.5 mT
|
0.43 kg / 0.96 LBS
434.1 g / 4.3 N
|
safe |
| 15 mm |
329 Gs
32.9 mT
|
0.12 kg / 0.27 LBS
124.5 g / 1.2 N
|
safe |
| 20 mm |
195 Gs
19.5 mT
|
0.04 kg / 0.10 LBS
43.9 g / 0.4 N
|
safe |
| 30 mm |
83 Gs
8.3 mT
|
0.01 kg / 0.02 LBS
8.0 g / 0.1 N
|
safe |
| 50 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 LBS
0.6 g / 0.0 N
|
safe |
Table 2: Vertical force (vertical surface)
MPL 40x10x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.37 kg / 5.22 LBS
2370.0 g / 23.2 N
|
| 1 mm | Stal (~0.2) |
1.79 kg / 3.95 LBS
1790.0 g / 17.6 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 2.81 LBS
1276.0 g / 12.5 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 1.95 LBS
886.0 g / 8.7 N
|
| 5 mm | Stal (~0.2) |
0.42 kg / 0.93 LBS
424.0 g / 4.2 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 0.19 LBS
86.0 g / 0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.05 LBS
24.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 LBS
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MPL 40x10x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
3.55 kg / 7.84 LBS
3555.0 g / 34.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.37 kg / 5.22 LBS
2370.0 g / 23.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.19 kg / 2.61 LBS
1185.0 g / 11.6 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
5.93 kg / 13.06 LBS
5925.0 g / 58.1 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 40x10x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.59 kg / 1.31 LBS
592.5 g / 5.8 N
|
| 1 mm |
|
1.48 kg / 3.27 LBS
1481.3 g / 14.5 N
|
| 2 mm |
|
2.96 kg / 6.53 LBS
2962.5 g / 29.1 N
|
| 3 mm |
|
4.44 kg / 9.80 LBS
4443.8 g / 43.6 N
|
| 5 mm |
|
7.41 kg / 16.33 LBS
7406.3 g / 72.7 N
|
| 10 mm |
|
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
|
| 11 mm |
|
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
|
| 12 mm |
|
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
|
Table 5: Thermal resistance (stability) - power drop
MPL 40x10x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
|
OK |
| 40 °C | -2.2% |
11.59 kg / 25.55 LBS
11589.3 g / 113.7 N
|
OK |
| 60 °C | -4.4% |
11.33 kg / 24.98 LBS
11328.6 g / 111.1 N
|
|
| 80 °C | -6.6% |
11.07 kg / 24.40 LBS
11067.9 g / 108.6 N
|
|
| 100 °C | -28.8% |
8.44 kg / 18.60 LBS
8437.2 g / 82.8 N
|
Table 6: Two magnets (attraction) - field range
MPL 40x10x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
25.44 kg / 56.10 LBS
4 569 Gs
|
3.82 kg / 8.41 LBS
3817 g / 37.4 N
|
N/A |
| 1 mm |
22.33 kg / 49.22 LBS
6 018 Gs
|
3.35 kg / 7.38 LBS
3349 g / 32.9 N
|
20.09 kg / 44.30 LBS
~0 Gs
|
| 2 mm |
19.21 kg / 42.36 LBS
5 582 Gs
|
2.88 kg / 6.35 LBS
2882 g / 28.3 N
|
17.29 kg / 38.12 LBS
~0 Gs
|
| 3 mm |
16.31 kg / 35.96 LBS
5 144 Gs
|
2.45 kg / 5.39 LBS
2447 g / 24.0 N
|
14.68 kg / 32.36 LBS
~0 Gs
|
| 5 mm |
11.45 kg / 25.23 LBS
4 309 Gs
|
1.72 kg / 3.78 LBS
1717 g / 16.8 N
|
10.30 kg / 22.71 LBS
~0 Gs
|
| 10 mm |
4.56 kg / 10.05 LBS
2 719 Gs
|
0.68 kg / 1.51 LBS
684 g / 6.7 N
|
4.10 kg / 9.04 LBS
~0 Gs
|
| 20 mm |
0.93 kg / 2.05 LBS
1 230 Gs
|
0.14 kg / 0.31 LBS
140 g / 1.4 N
|
0.84 kg / 1.85 LBS
~0 Gs
|
| 50 mm |
0.04 kg / 0.08 LBS
249 Gs
|
0.01 kg / 0.01 LBS
6 g / 0.1 N
|
0.03 kg / 0.08 LBS
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 LBS
167 Gs
|
0.00 kg / 0.01 LBS
3 g / 0.0 N
|
0.02 kg / 0.03 LBS
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 LBS
116 Gs
|
0.00 kg / 0.00 LBS
1 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 LBS
84 Gs
|
0.00 kg / 0.00 LBS
1 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 LBS
62 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
48 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MPL 40x10x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 9.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 7.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 5.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 4.5 cm |
| Car key | 50 Gs (5.0 mT) | 4.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Impact energy (kinetic energy) - warning
MPL 40x10x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.99 km/h
(8.05 m/s)
|
0.49 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.40 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
2.33 J | |
| 100 mm |
89.64 km/h
(24.90 m/s)
|
4.65 J |
Table 9: Anti-corrosion coating durability
MPL 40x10x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 40x10x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 11 419 Mx | 114.2 µWb |
| Pc Coefficient | 0.31 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 40x10x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 11.85 kg | Standard |
| Water (riverbed) |
13.57 kg
(+1.72 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet holds merely ~20% of its perpendicular strength.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) severely weakens the holding force.
3. Thermal stability
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.31
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See more products
Pros as well as cons of Nd2Fe14B magnets.
Benefits
- They have constant strength, and over around ten years their performance decreases symbolically – ~1% (according to theory),
- Neodymium magnets are remarkably resistant to magnetic field loss caused by external field sources,
- A magnet with a smooth nickel surface looks better,
- The surface of neodymium magnets generates a powerful magnetic field – this is a key feature,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can function (depending on the form) even at a temperature of 230°C or more...
- Thanks to the ability of flexible molding and customization to unique requirements, neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies use scope,
- Significant place in innovative solutions – they serve a role in data components, electric motors, medical equipment, and industrial machines.
- Thanks to efficiency per cm³, small magnets offer high operating force, in miniature format,
Limitations
- At strong impacts they can crack, therefore we advise placing them in steel cases. A metal housing provides additional protection against damage and increases the magnet's durability.
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture
- We suggest casing - magnetic mechanism, due to difficulties in producing threads inside the magnet and complex shapes.
- Potential hazard to health – tiny shards of magnets pose a threat, if swallowed, which becomes key in the aspect of protecting the youngest. Additionally, small elements of these products are able to disrupt the diagnostic process medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Detachment force of the magnet in optimal conditions – what contributes to it?
- with the contact of a sheet made of special test steel, guaranteeing full magnetic saturation
- with a cross-section no less than 10 mm
- characterized by even structure
- under conditions of gap-free contact (surface-to-surface)
- for force acting at a right angle (pull-off, not shear)
- in neutral thermal conditions
Determinants of lifting force in real conditions
- Space between surfaces – even a fraction of a millimeter of separation (caused e.g. by veneer or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
- Angle of force application – maximum parameter is reached only during pulling at a 90° angle. The shear force of the magnet along the plate is typically many times smaller (approx. 1/5 of the lifting capacity).
- Metal thickness – the thinner the sheet, the weaker the hold. Magnetic flux penetrates through instead of generating force.
- Metal type – not every steel attracts identically. High carbon content worsen the attraction effect.
- Surface condition – smooth surfaces ensure maximum contact, which improves field saturation. Rough surfaces reduce efficiency.
- Temperature – heating the magnet results in weakening of induction. Check the thermal limit for a given model.
Lifting capacity was measured by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the holding force is lower. In addition, even a small distance between the magnet and the plate decreases the load capacity.
Safe handling of NdFeB magnets
Swallowing risk
Only for adults. Small elements pose a choking risk, causing severe trauma. Keep out of reach of children and animals.
Nickel allergy
Some people experience a sensitization to Ni, which is the common plating for NdFeB magnets. Prolonged contact can result in a rash. It is best to wear safety gloves.
Powerful field
Handle with care. Neodymium magnets act from a long distance and snap with massive power, often quicker than you can move away.
Serious injuries
Large magnets can smash fingers in a fraction of a second. Never put your hand between two attracting surfaces.
Compass and GPS
Navigation devices and mobile phones are extremely sensitive to magnetic fields. Close proximity with a strong magnet can permanently damage the internal compass in your phone.
Cards and drives
Avoid bringing magnets close to a wallet, computer, or screen. The magnetism can destroy these devices and erase data from cards.
Fire warning
Powder produced during grinding of magnets is self-igniting. Avoid drilling into magnets without proper cooling and knowledge.
Life threat
Life threat: Strong magnets can deactivate pacemakers and defibrillators. Stay away if you have electronic implants.
Demagnetization risk
Control the heat. Exposing the magnet above 80 degrees Celsius will destroy its magnetic structure and pulling force.
Magnet fragility
Despite metallic appearance, the material is brittle and cannot withstand shocks. Avoid impacts, as the magnet may shatter into sharp, dangerous pieces.
