Neodymium magnets – most powerful on the market

Need strong magnetic field? We offer rich assortment of disc, cylindrical and ring magnets. Best choice for home use, workshop and industrial tasks. See products with fast shipping.

check price list and dimensions

Equipment for treasure hunters

Start your adventure with treasure salvaging! Our double-handle grips (F200, F400) provide safety guarantee and immense power. Stainless steel construction and reinforced ropes are reliable in any water.

find your set

Magnetic solutions for business

Proven solutions for mounting non-invasive. Threaded mounts (M8, M10, M12) guarantee instant organization of work on warehouses. Perfect for mounting lighting, sensors and ads.

check technical specs

🚀 Express processing: orders by 14:00 shipped immediately!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MPL 40x10x5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020152

GTIN/EAN: 5906301811589

5.00

length

40 mm [±0,1 mm]

Width

10 mm [±0,1 mm]

Height

5 mm [±0,1 mm]

Weight

15 g

Magnetization Direction

↑ axial

Load capacity

11.85 kg / 116.27 N

Magnetic Induction

321.37 mT / 3214 Gs

Coating

[NiCuNi] Nickel

6.03 with VAT / pcs + price for transport

4.90 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.90 ZŁ
6.03 ZŁ
price from 150 pcs
4.61 ZŁ
5.67 ZŁ
price from 550 pcs
4.31 ZŁ
5.30 ZŁ
Not sure about your choice?

Give us a call +48 22 499 98 98 if you prefer contact us via inquiry form the contact page.
Parameters along with structure of a magnet can be reviewed on our power calculator.

Order by 14:00 and we’ll ship today!

Technical specification - MPL 40x10x5 / N38 - lamellar magnet

Specification / characteristics - MPL 40x10x5 / N38 - lamellar magnet

properties
properties values
Cat. no. 020152
GTIN/EAN 5906301811589
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 40 mm [±0,1 mm]
Width 10 mm [±0,1 mm]
Height 5 mm [±0,1 mm]
Weight 15 g
Magnetization Direction ↑ axial
Load capacity ~ ? 11.85 kg / 116.27 N
Magnetic Induction ~ ? 321.37 mT / 3214 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 40x10x5 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering analysis of the magnet - technical parameters

Presented data constitute the direct effect of a engineering calculation. Values are based on models for the class Nd2Fe14B. Actual conditions may differ from theoretical values. Treat these calculations as a reference point during assembly planning.

Table 1: Static pull force (pull vs gap) - power drop
MPL 40x10x5 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3212 Gs
321.2 mT
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
dangerous!
1 mm 2791 Gs
279.1 mT
8.95 kg / 19.73 LBS
8947.7 g / 87.8 N
warning
2 mm 2358 Gs
235.8 mT
6.38 kg / 14.08 LBS
6384.9 g / 62.6 N
warning
3 mm 1965 Gs
196.5 mT
4.43 kg / 9.77 LBS
4432.4 g / 43.5 N
warning
5 mm 1360 Gs
136.0 mT
2.12 kg / 4.68 LBS
2122.9 g / 20.8 N
warning
10 mm 615 Gs
61.5 mT
0.43 kg / 0.96 LBS
434.1 g / 4.3 N
safe
15 mm 329 Gs
32.9 mT
0.12 kg / 0.27 LBS
124.5 g / 1.2 N
safe
20 mm 195 Gs
19.5 mT
0.04 kg / 0.10 LBS
43.9 g / 0.4 N
safe
30 mm 83 Gs
8.3 mT
0.01 kg / 0.02 LBS
8.0 g / 0.1 N
safe
50 mm 24 Gs
2.4 mT
0.00 kg / 0.00 LBS
0.6 g / 0.0 N
safe

Table 2: Vertical force (vertical surface)
MPL 40x10x5 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 2.37 kg / 5.22 LBS
2370.0 g / 23.2 N
1 mm Stal (~0.2) 1.79 kg / 3.95 LBS
1790.0 g / 17.6 N
2 mm Stal (~0.2) 1.28 kg / 2.81 LBS
1276.0 g / 12.5 N
3 mm Stal (~0.2) 0.89 kg / 1.95 LBS
886.0 g / 8.7 N
5 mm Stal (~0.2) 0.42 kg / 0.93 LBS
424.0 g / 4.2 N
10 mm Stal (~0.2) 0.09 kg / 0.19 LBS
86.0 g / 0.8 N
15 mm Stal (~0.2) 0.02 kg / 0.05 LBS
24.0 g / 0.2 N
20 mm Stal (~0.2) 0.01 kg / 0.02 LBS
8.0 g / 0.1 N
30 mm Stal (~0.2) 0.00 kg / 0.00 LBS
2.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - vertical pull
MPL 40x10x5 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
3.55 kg / 7.84 LBS
3555.0 g / 34.9 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
2.37 kg / 5.22 LBS
2370.0 g / 23.2 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
1.19 kg / 2.61 LBS
1185.0 g / 11.6 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
5.93 kg / 13.06 LBS
5925.0 g / 58.1 N

Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 40x10x5 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
5%
0.59 kg / 1.31 LBS
592.5 g / 5.8 N
1 mm
13%
1.48 kg / 3.27 LBS
1481.3 g / 14.5 N
2 mm
25%
2.96 kg / 6.53 LBS
2962.5 g / 29.1 N
3 mm
38%
4.44 kg / 9.80 LBS
4443.8 g / 43.6 N
5 mm
63%
7.41 kg / 16.33 LBS
7406.3 g / 72.7 N
10 mm
100%
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
11 mm
100%
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
12 mm
100%
11.85 kg / 26.12 LBS
11850.0 g / 116.2 N

Table 5: Thermal resistance (stability) - power drop
MPL 40x10x5 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 11.85 kg / 26.12 LBS
11850.0 g / 116.2 N
OK
40 °C -2.2% 11.59 kg / 25.55 LBS
11589.3 g / 113.7 N
OK
60 °C -4.4% 11.33 kg / 24.98 LBS
11328.6 g / 111.1 N
80 °C -6.6% 11.07 kg / 24.40 LBS
11067.9 g / 108.6 N
100 °C -28.8% 8.44 kg / 18.60 LBS
8437.2 g / 82.8 N

Table 6: Two magnets (attraction) - field range
MPL 40x10x5 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 25.44 kg / 56.10 LBS
4 569 Gs
3.82 kg / 8.41 LBS
3817 g / 37.4 N
N/A
1 mm 22.33 kg / 49.22 LBS
6 018 Gs
3.35 kg / 7.38 LBS
3349 g / 32.9 N
20.09 kg / 44.30 LBS
~0 Gs
2 mm 19.21 kg / 42.36 LBS
5 582 Gs
2.88 kg / 6.35 LBS
2882 g / 28.3 N
17.29 kg / 38.12 LBS
~0 Gs
3 mm 16.31 kg / 35.96 LBS
5 144 Gs
2.45 kg / 5.39 LBS
2447 g / 24.0 N
14.68 kg / 32.36 LBS
~0 Gs
5 mm 11.45 kg / 25.23 LBS
4 309 Gs
1.72 kg / 3.78 LBS
1717 g / 16.8 N
10.30 kg / 22.71 LBS
~0 Gs
10 mm 4.56 kg / 10.05 LBS
2 719 Gs
0.68 kg / 1.51 LBS
684 g / 6.7 N
4.10 kg / 9.04 LBS
~0 Gs
20 mm 0.93 kg / 2.05 LBS
1 230 Gs
0.14 kg / 0.31 LBS
140 g / 1.4 N
0.84 kg / 1.85 LBS
~0 Gs
50 mm 0.04 kg / 0.08 LBS
249 Gs
0.01 kg / 0.01 LBS
6 g / 0.1 N
0.03 kg / 0.08 LBS
~0 Gs
60 mm 0.02 kg / 0.04 LBS
167 Gs
0.00 kg / 0.01 LBS
3 g / 0.0 N
0.02 kg / 0.03 LBS
~0 Gs
70 mm 0.01 kg / 0.02 LBS
116 Gs
0.00 kg / 0.00 LBS
1 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
80 mm 0.00 kg / 0.01 LBS
84 Gs
0.00 kg / 0.00 LBS
1 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
90 mm 0.00 kg / 0.01 LBS
62 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
100 mm 0.00 kg / 0.00 LBS
48 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs

Table 7: Safety (HSE) (electronics) - precautionary measures
MPL 40x10x5 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 9.0 cm
Hearing aid 10 Gs (1.0 mT) 7.0 cm
Timepiece 20 Gs (2.0 mT) 5.5 cm
Mobile device 40 Gs (4.0 mT) 4.5 cm
Car key 50 Gs (5.0 mT) 4.0 cm
Payment card 400 Gs (40.0 mT) 1.5 cm
HDD hard drive 600 Gs (60.0 mT) 1.5 cm

Table 8: Impact energy (kinetic energy) - warning
MPL 40x10x5 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 28.99 km/h
(8.05 m/s)
0.49 J
30 mm 49.12 km/h
(13.64 m/s)
1.40 J
50 mm 63.39 km/h
(17.61 m/s)
2.33 J
100 mm 89.64 km/h
(24.90 m/s)
4.65 J

Table 9: Anti-corrosion coating durability
MPL 40x10x5 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Flux)
MPL 40x10x5 / N38

Parameter Value SI Unit / Description
Magnetic Flux 11 419 Mx 114.2 µWb
Pc Coefficient 0.31 Low (Flat)

Table 11: Underwater work (magnet fishing)
MPL 40x10x5 / N38

Environment Effective steel pull Effect
Air (land) 11.85 kg Standard
Water (riverbed) 13.57 kg
(+1.72 kg buoyancy gain)
+14.5%
Warning: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Vertical hold

*Warning: On a vertical wall, the magnet holds merely ~20% of its perpendicular strength.

2. Efficiency vs thickness

*Thin steel (e.g. computer case) severely weakens the holding force.

3. Thermal stability

*For N38 grade, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.31

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical specification and ecology
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020152-2026
Magnet Unit Converter
Magnet pull force

Magnetic Field

See more products

This product is an extremely strong plate magnet made of NdFeB material, which, with dimensions of 40x10x5 mm and a weight of 15 g, guarantees the highest quality connection. As a block magnet with high power (approx. 11.85 kg), this product is available off-the-shelf from our warehouse in Poland. Furthermore, its Ni-Cu-Ni coating protects it against corrosion in standard operating conditions, giving it an aesthetic appearance.
Separating block magnets requires a technique based on sliding (moving one relative to the other), rather than forceful pulling apart. To separate the MPL 40x10x5 / N38 model, firmly slide one magnet over the edge of the other until the attraction force decreases. We recommend extreme caution, because after separation, the magnets may want to violently snap back together, which threatens pinching the skin. Never use metal tools for prying, as the brittle NdFeB material may chip and damage your eyes.
They constitute a key element in the production of generators and material handling systems. They work great as fasteners under tiles, wood, or glass. Customers often choose this model for hanging tools on strips and for advanced DIY and modeling projects, where precision and power count.
Cyanoacrylate glues (super glue type) are good only for small magnets; for larger plates, we recommend resins. For lighter applications or mounting on smooth surfaces, branded foam tape (e.g., 3M VHB) will work, provided the surface is perfectly degreased. Avoid chemically aggressive glues or hot glue, which can demagnetize neodymium (above 80°C).
The magnetic axis runs through the shortest dimension, which is typical for gripper magnets. In practice, this means that this magnet has the greatest attraction force on its main planes (40x10 mm), which is ideal for flat mounting. This is the most popular configuration for block magnets used in separators and holders.
The presented product is a neodymium magnet with precisely defined parameters: 40 mm (length), 10 mm (width), and 5 mm (thickness). The key parameter here is the lifting capacity amounting to approximately 11.85 kg (force ~116.27 N), which, with such a compact shape, proves the high grade of the material. The product meets the standards for N38 grade magnets.

Pros as well as cons of Nd2Fe14B magnets.

Benefits

Apart from their strong power, neodymium magnets have these key benefits:
  • They have constant strength, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • Neodymium magnets are remarkably resistant to magnetic field loss caused by external field sources,
  • A magnet with a smooth nickel surface looks better,
  • The surface of neodymium magnets generates a powerful magnetic field – this is a key feature,
  • Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can function (depending on the form) even at a temperature of 230°C or more...
  • Thanks to the ability of flexible molding and customization to unique requirements, neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies use scope,
  • Significant place in innovative solutions – they serve a role in data components, electric motors, medical equipment, and industrial machines.
  • Thanks to efficiency per cm³, small magnets offer high operating force, in miniature format,

Limitations

Disadvantages of neodymium magnets:
  • At strong impacts they can crack, therefore we advise placing them in steel cases. A metal housing provides additional protection against damage and increases the magnet's durability.
  • Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
  • Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture
  • We suggest casing - magnetic mechanism, due to difficulties in producing threads inside the magnet and complex shapes.
  • Potential hazard to health – tiny shards of magnets pose a threat, if swallowed, which becomes key in the aspect of protecting the youngest. Additionally, small elements of these products are able to disrupt the diagnostic process medical after entering the body.
  • Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications

Pull force analysis

Detachment force of the magnet in optimal conditionswhat contributes to it?

The specified lifting capacity represents the limit force, obtained under laboratory conditions, namely:
  • with the contact of a sheet made of special test steel, guaranteeing full magnetic saturation
  • with a cross-section no less than 10 mm
  • characterized by even structure
  • under conditions of gap-free contact (surface-to-surface)
  • for force acting at a right angle (pull-off, not shear)
  • in neutral thermal conditions

Determinants of lifting force in real conditions

It is worth knowing that the working load will differ influenced by the following factors, starting with the most relevant:
  • Space between surfaces – even a fraction of a millimeter of separation (caused e.g. by veneer or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
  • Angle of force application – maximum parameter is reached only during pulling at a 90° angle. The shear force of the magnet along the plate is typically many times smaller (approx. 1/5 of the lifting capacity).
  • Metal thickness – the thinner the sheet, the weaker the hold. Magnetic flux penetrates through instead of generating force.
  • Metal type – not every steel attracts identically. High carbon content worsen the attraction effect.
  • Surface condition – smooth surfaces ensure maximum contact, which improves field saturation. Rough surfaces reduce efficiency.
  • Temperature – heating the magnet results in weakening of induction. Check the thermal limit for a given model.

Lifting capacity was measured by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the holding force is lower. In addition, even a small distance between the magnet and the plate decreases the load capacity.

Safe handling of NdFeB magnets
Swallowing risk

Only for adults. Small elements pose a choking risk, causing severe trauma. Keep out of reach of children and animals.

Nickel allergy

Some people experience a sensitization to Ni, which is the common plating for NdFeB magnets. Prolonged contact can result in a rash. It is best to wear safety gloves.

Powerful field

Handle with care. Neodymium magnets act from a long distance and snap with massive power, often quicker than you can move away.

Serious injuries

Large magnets can smash fingers in a fraction of a second. Never put your hand between two attracting surfaces.

Compass and GPS

Navigation devices and mobile phones are extremely sensitive to magnetic fields. Close proximity with a strong magnet can permanently damage the internal compass in your phone.

Cards and drives

Avoid bringing magnets close to a wallet, computer, or screen. The magnetism can destroy these devices and erase data from cards.

Fire warning

Powder produced during grinding of magnets is self-igniting. Avoid drilling into magnets without proper cooling and knowledge.

Life threat

Life threat: Strong magnets can deactivate pacemakers and defibrillators. Stay away if you have electronic implants.

Demagnetization risk

Control the heat. Exposing the magnet above 80 degrees Celsius will destroy its magnetic structure and pulling force.

Magnet fragility

Despite metallic appearance, the material is brittle and cannot withstand shocks. Avoid impacts, as the magnet may shatter into sharp, dangerous pieces.

Danger! More info about risks in the article: Safety of working with magnets.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98