HH 42x8.8 [M6] / N38 - through hole magnetic holder
through hole magnetic holder
Catalog no 370484
GTIN: 5906301814948
Diameter Ø [±0,1 mm]
42 mm
Height [±0,1 mm]
8.8 mm
Weight
75.2 g
Magnetization Direction
↑ axial
Load capacity
55 kg / 539.37 N
Coating
[NiCuNi] nickel
29.89 ZŁ with VAT / pcs + price for transport
24.30 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Pick up the phone and ask
+48 22 499 98 98
alternatively contact us using
inquiry form
the contact form page.
Parameters as well as form of a magnet can be analyzed using our
online calculation tool.
Same-day processing for orders placed before 14:00.
HH 42x8.8 [M6] / N38 - through hole magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- They have stable power, and over more than ten years their attraction force decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to magnetic surroundings,
- By applying a bright layer of silver, the element gains a sleek look,
- They have exceptional magnetic induction on the surface of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping and customization to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
- Key role in cutting-edge sectors – they are utilized in hard drives, electromechanical systems, diagnostic apparatus along with technologically developed systems,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall strength,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to humidity can rust. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
- Potential hazard related to magnet particles may arise, when consumed by mistake, which is important in the context of child safety. Moreover, tiny components from these products can complicate medical imaging once in the system,
- Due to expensive raw materials, their cost is relatively high,
Maximum lifting capacity of the magnet – what contributes to it?
The given holding capacity of the magnet corresponds to the highest holding force, determined under optimal conditions, namely:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.
Safety Precautions
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets away from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are known for their fragility, which can cause them to become damaged.
Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
If the joining of neodymium magnets is not under control, then they may crumble and also crack. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Exercise caution!
So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.
