HH 42x8.8 [M6] / N38 - through hole magnetic holder
through hole magnetic holder
Catalog no 370484
GTIN: 5906301814948
Diameter Ø [±0,1 mm]
42 mm
Height [±0,1 mm]
8.8 mm
Weight
75.2 g
Magnetization Direction
↑ axial
Load capacity
55 kg / 539.37 N
Coating
[NiCuNi] nickel
29.89 ZŁ with VAT / pcs + price for transport
24.30 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Call us
+48 888 99 98 98
if you prefer contact us using
request form
the contact form page.
Strength and form of magnets can be estimated using our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
HH 42x8.8 [M6] / N38 - through hole magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They retain their magnetic properties for around 10 years – the loss is just ~1% (based on simulations),
- They show exceptional resistance to demagnetization from external field exposure,
- The use of a polished silver surface provides a smooth finish,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
- Wide application in modern technologies – they find application in computer drives, electric drives, clinical machines as well as other advanced devices,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall durability,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a wet environment – during outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
- Potential hazard related to magnet particles may arise, especially if swallowed, which is important in the protection of children. Additionally, miniature parts from these devices have the potential to interfere with diagnostics when ingested,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Breakaway strength of the magnet in ideal conditions – what contributes to it?
The given strength of the magnet represents the optimal strength, determined in ideal conditions, specifically:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- with vertical force applied
- at room temperature
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet’s surface and the plate reduces the lifting capacity.
Precautions
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
It is essential to maintain neodymium magnets away from youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are delicate and can easily crack as well as shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Exercise caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
