tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy powerful magnet? Magnet holders in airtight and durable enclosure are excellent for use in challenging weather conditions, including during snow and rain see...

magnetic holders

Holders with magnets can be used to facilitate production processes, underwater discoveries, or finding meteorites made of ore read...

Enjoy delivery of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

HH 42x8.8 [M6] / N38 - through hole magnetic holder

through hole magnetic holder

Catalog no 370484

GTIN: 5906301814948

0

Diameter Ø [±0,1 mm]

42 mm

Height [±0,1 mm]

8.8 mm

Weight

75.2 g

Magnetization Direction

↑ axial

Load capacity

55 kg / 539.37 N

Coating

[NiCuNi] nickel

29.89 with VAT / pcs + price for transport

24.30 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
24.30 ZŁ
29.89 ZŁ
price from 30 pcs
22.84 ZŁ
28.10 ZŁ
price from 70 pcs
21.38 ZŁ
26.30 ZŁ

Want to talk magnets?

Call us now +48 888 99 98 98 if you prefer send us a note through inquiry form the contact page.
Lifting power and appearance of a neodymium magnet can be estimated using our modular calculator.

Same-day processing for orders placed before 14:00.

HH 42x8.8 [M6] / N38 - through hole magnetic holder

Specification/characteristics HH 42x8.8 [M6] / N38 - through hole magnetic holder
properties
values
Cat. no.
370484
GTIN
5906301814948
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
42 mm [±0,1 mm]
Height
8.8 mm [±0,1 mm]
Weight
75.2 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
55 kg / 539.37 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They retain their magnetic properties for around 10 years – the loss is just ~1% (based on simulations),
  • They show exceptional resistance to demagnetization from external field exposure,
  • The use of a polished silver surface provides a smooth finish,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
  • Wide application in modern technologies – they find application in computer drives, electric drives, clinical machines as well as other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment – during outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
  • Potential hazard related to magnet particles may arise, especially if swallowed, which is important in the protection of children. Additionally, miniature parts from these devices have the potential to interfere with diagnostics when ingested,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given strength of the magnet represents the optimal strength, determined in ideal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • with vertical force applied
  • at room temperature

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet’s surface and the plate reduces the lifting capacity.

Precautions

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

 It is essential to maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Neodymium magnets are delicate and can easily crack as well as shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Exercise caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98