tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are in stock for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnet for fishing F400 GOLD

Where to purchase powerful magnet? Magnetic holders in solid and airtight enclosure are perfect for use in challenging climate conditions, including in the rain and snow more information...

magnetic holders

Magnetic holders can be applied to enhance production, underwater exploration, or finding meteors made of ore see...

We promise to ship your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships tomorrow

UMGGZ 66x8.5 [M8] GZ / N38 - rubber magnetic holder external thread

rubber magnetic holder external thread

Catalog no 340423

GTIN: 5906301814764

5

Diameter Ø [±0,1 mm]

66 mm

Height [±0,1 mm]

8.5 mm

Weight

100 g

Load capacity

18.4 kg / 180.44 N

23.37 with VAT / pcs + price for transport

19.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
19.00 ZŁ
23.37 ZŁ
price from 20 pcs
17.86 ZŁ
21.97 ZŁ
price from 50 pcs
16.72 ZŁ
20.57 ZŁ

Can't decide what to choose?

Contact us by phone +48 22 499 98 98 alternatively get in touch using form our website.
Strength and form of a neodymium magnet can be calculated with our modular calculator.

Orders submitted before 14:00 will be dispatched today!

UMGGZ 66x8.5 [M8] GZ / N38 - rubber magnetic holder external thread

Specification/characteristics UMGGZ 66x8.5 [M8] GZ / N38 - rubber magnetic holder external thread
properties
values
Cat. no.
340423
GTIN
5906301814764
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
66 mm [±0,1 mm]
Height
8.5 mm [±0,1 mm]
Weight
100 g [±0,1 mm]
Load capacity ~ ?
18.4 kg / 180.44 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The protruding thread allows instant screwing of a lamp or holder with a nut. It is ideal for outdoor and automotive applications.
They can be safely used outdoors all year round, in rain and frost. This is the best solution for mounting on a vehicle roof.
Rubber-coated holders are the safest choice for painted surfaces. A clean surface guarantees no scratches and maximum grip.
The thread size is standard and fits typical nuts. It allows easy lamp mounting by putting the screw through the hole in the lamp holder and tightening the nut.
Thanks to the multi-pole (Halbach) arrangement, force is concentrated at the surface. Model UMGGZ 66x8.5 [M8] GZ / N38 is adapted to hold elements at road speeds (with appropriate point selection).
Rubber-coated magnets are ideal for quick plate mounting and dismounting. Magnets should be screwed to the plate (or glued), then applied to the bumper (if metal) or a second set of magnets under the bumper

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their full power for almost ten years – the loss is just ~1% (in theory),
  • Their ability to resist magnetic interference from external fields is among the best,
  • The use of a mirror-like nickel surface provides a refined finish,
  • Magnetic induction on the surface of these magnets is notably high,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • The ability for custom shaping as well as adjustment to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Wide application in cutting-edge sectors – they are used in computer drives, electric drives, diagnostic apparatus or even technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in compact constructions

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and enhances its overall durability,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is restricted,
  • Potential hazard due to small fragments may arise, in case of ingestion, which is significant in the context of child safety. It should also be noted that minuscule fragments from these assemblies may complicate medical imaging after being swallowed,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Detachment force of the magnet in optimal conditionswhat affects it?

The given strength of the magnet represents the optimal strength, assessed under optimal conditions, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • at room temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is determined by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate reduces the holding force.

Be Cautious with Neodymium Magnets

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will crack or alternatively crumble with careless joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are extremely fragile, they easily break as well as can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 Keep neodymium magnets far from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98