tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to buy strong magnet? Magnetic holders in solid and airtight steel casing are perfect for use in difficult, demanding weather, including in the rain and snow read...

magnets with holders

Holders with magnets can be used to improve manufacturing, exploring underwater areas, or finding meteorites made of metal more...

We promise to ship your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGZ 66x8.5 [M8] GZ / N38 - rubber magnetic holder external thread

rubber magnetic holder external thread

Catalog no 340423

GTIN: 5906301814764

5

Diameter Ø [±0,1 mm]

66 mm

Height [±0,1 mm]

8.5 mm

Weight

100 g

Load capacity

18.4 kg / 180.44 N

23.37 with VAT / pcs + price for transport

19.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
19.00 ZŁ
23.37 ZŁ
price from 20 pcs
17.86 ZŁ
21.97 ZŁ
price from 50 pcs
16.72 ZŁ
20.57 ZŁ

Do you have trouble choosing?

Call us +48 888 99 98 98 otherwise send us a note by means of our online form the contact form page.
Lifting power as well as form of magnets can be tested with our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

UMGGZ 66x8.5 [M8] GZ / N38 - rubber magnetic holder external thread

Specification/characteristics UMGGZ 66x8.5 [M8] GZ / N38 - rubber magnetic holder external thread
properties
values
Cat. no.
340423
GTIN
5906301814764
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
66 mm [±0,1 mm]
Height
8.5 mm [±0,1 mm]
Weight
100 g [±0,1 mm]
Load capacity ~ ?
18.4 kg / 180.44 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They do not lose their even during around 10 years – the loss of lifting capacity is only ~1% (according to tests),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • In other words, due to the glossy gold coating, the magnet obtains an aesthetic appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their application range,
  • Wide application in advanced technical fields – they are utilized in data storage devices, electric motors, healthcare devices along with other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall robustness,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is crucial in the context of child safety. Moreover, minuscule fragments from these products may hinder health screening after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in ideal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is influenced by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnetic are extremely fragile, leading to breaking.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets will bounce and touch together within a radius of several to almost 10 cm from each other.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

  Neodymium magnets should not be around youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Safety precautions!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98