tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are available for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy powerful magnet? Magnet holders in airtight, solid enclosure are perfect for use in variable and difficult weather, including in the rain and snow see...

magnetic holders

Holders with magnets can be applied to facilitate production, underwater exploration, or searching for meteorites from gold read...

Order is always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 30x15x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020389

GTIN: 5906301811886

5

length [±0,1 mm]

30 mm

Width [±0,1 mm]

15 mm

Height [±0,1 mm]

10 mm

Weight

33.75 g

Magnetization Direction

↑ axial

Load capacity

16.75 kg / 164.26 N

Magnetic Induction

413.45 mT

Coating

[NiCuNi] nickel

23.60 with VAT / pcs + price for transport

19.19 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
19.19 ZŁ
23.60 ZŁ
price from 32 pcs
18.04 ZŁ
22.19 ZŁ
price from 115 pcs
16.89 ZŁ
20.77 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 30x15x10 / N38 - lamellar magnet

Specification/characteristics MPL 30x15x10 / N38 - lamellar magnet
properties
values
Cat. no.
020389
GTIN
5906301811886
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
30 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
33.75 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.75 kg / 164.26 N
Magnetic Induction ~ ?
413.45 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 30x15x10 / N38 are magnets created from neodymium in a flat form. They are valued for their exceptionally potent magnetic properties, which outshine ordinary iron magnets.
Thanks to their high strength, flat magnets are frequently used in devices that need strong holding power.
Most common temperature resistance of these magnets is 80°C, but depending on the dimensions, this value rises.
In addition, flat magnets commonly have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their durability.
The magnet named MPL 30x15x10 / N38 i.e. a lifting capacity of 16.75 kg which weighs a mere 33.75 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which lead to them being the best choice for various uses:
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often utilized in many devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: The flat form's flat shape simplifies mounting, particularly when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility creators greater flexibility in placing them in structures, which is more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet can provide better stability, reducing the risk of sliding or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the given use and requirements. In some cases, other shapes, like cylindrical or spherical, are more appropriate.
Magnets attract ferromagnetic materials, such as iron elements, objects containing nickel, cobalt and special alloys of ferromagnetic metals. Moreover, magnets may lesser affect some other metals, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of their magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of magnets creates attractive interactions, which attract materials containing nickel or other magnetic materials.

Magnets have two poles: north (N) and south (S), which interact with each other when they are different. Similar poles, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
Not all materials react to magnets, and examples of such substances are plastics, glass items, wood and most gemstones. Furthermore, magnets do not affect certain metals, such as copper items, aluminum, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Key role in the industry of new technologies – are utilized in hard drives, electric drive mechanisms, medical equipment and very advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger associated with microscopic parts of magnets are risky, in case of ingestion, which is particularly important in the aspect of protecting young children. It's also worth noting that small elements of these devices have the potential to hinder the diagnostic process in case of swallowing.

Caution with Neodymium Magnets

Neodymium magnets are fragile as well as can easily crack as well as get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If you have a finger between or on the path of attracting magnets, there may be a severe cut or a fracture.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98