MPL 20x3x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020130
GTIN/EAN: 5906301811367
length
20 mm [±0,1 mm]
Width
3 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.9 g
Magnetization Direction
↑ axial
Load capacity
2.33 kg / 22.90 N
Magnetic Induction
370.68 mT / 3707 Gs
Coating
[NiCuNi] Nickel
0.394 ZŁ with VAT / pcs + price for transport
0.320 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
or drop us a message via
form
through our site.
Specifications and shape of magnetic components can be reviewed with our
magnetic calculator.
Same-day processing for orders placed before 14:00.
Technical specification - MPL 20x3x2 / N38 - lamellar magnet
Specification / characteristics - MPL 20x3x2 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020130 |
| GTIN/EAN | 5906301811367 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 20 mm [±0,1 mm] |
| Width | 3 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.9 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.33 kg / 22.90 N |
| Magnetic Induction ~ ? | 370.68 mT / 3707 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the product - report
These values constitute the outcome of a mathematical analysis. Values were calculated on models for the material Nd2Fe14B. Operational performance might slightly deviate from the simulation results. Use these data as a reference point for designers.
Table 1: Static force (pull vs distance) - characteristics
MPL 20x3x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3700 Gs
370.0 mT
|
2.33 kg / 5.14 pounds
2330.0 g / 22.9 N
|
medium risk |
| 1 mm |
2103 Gs
210.3 mT
|
0.75 kg / 1.66 pounds
752.3 g / 7.4 N
|
low risk |
| 2 mm |
1172 Gs
117.2 mT
|
0.23 kg / 0.52 pounds
233.7 g / 2.3 N
|
low risk |
| 3 mm |
721 Gs
72.1 mT
|
0.09 kg / 0.20 pounds
88.5 g / 0.9 N
|
low risk |
| 5 mm |
345 Gs
34.5 mT
|
0.02 kg / 0.04 pounds
20.3 g / 0.2 N
|
low risk |
| 10 mm |
101 Gs
10.1 mT
|
0.00 kg / 0.00 pounds
1.7 g / 0.0 N
|
low risk |
| 15 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.00 pounds
0.3 g / 0.0 N
|
low risk |
| 20 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 pounds
0.1 g / 0.0 N
|
low risk |
| 30 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
Table 2: Slippage hold (wall)
MPL 20x3x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.47 kg / 1.03 pounds
466.0 g / 4.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 0.33 pounds
150.0 g / 1.5 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.10 pounds
46.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 pounds
18.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 pounds
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MPL 20x3x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 1.54 pounds
699.0 g / 6.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.47 kg / 1.03 pounds
466.0 g / 4.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 0.51 pounds
233.0 g / 2.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.17 kg / 2.57 pounds
1165.0 g / 11.4 N
|
Table 4: Material efficiency (saturation) - power losses
MPL 20x3x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 0.51 pounds
233.0 g / 2.3 N
|
| 1 mm |
|
0.58 kg / 1.28 pounds
582.5 g / 5.7 N
|
| 2 mm |
|
1.17 kg / 2.57 pounds
1165.0 g / 11.4 N
|
| 3 mm |
|
1.75 kg / 3.85 pounds
1747.5 g / 17.1 N
|
| 5 mm |
|
2.33 kg / 5.14 pounds
2330.0 g / 22.9 N
|
| 10 mm |
|
2.33 kg / 5.14 pounds
2330.0 g / 22.9 N
|
| 11 mm |
|
2.33 kg / 5.14 pounds
2330.0 g / 22.9 N
|
| 12 mm |
|
2.33 kg / 5.14 pounds
2330.0 g / 22.9 N
|
Table 5: Thermal stability (material behavior) - thermal limit
MPL 20x3x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.33 kg / 5.14 pounds
2330.0 g / 22.9 N
|
OK |
| 40 °C | -2.2% |
2.28 kg / 5.02 pounds
2278.7 g / 22.4 N
|
OK |
| 60 °C | -4.4% |
2.23 kg / 4.91 pounds
2227.5 g / 21.9 N
|
|
| 80 °C | -6.6% |
2.18 kg / 4.80 pounds
2176.2 g / 21.3 N
|
|
| 100 °C | -28.8% |
1.66 kg / 3.66 pounds
1659.0 g / 16.3 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MPL 20x3x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.06 kg / 11.17 pounds
4 866 Gs
|
0.76 kg / 1.67 pounds
760 g / 7.5 N
|
N/A |
| 1 mm |
3.01 kg / 6.64 pounds
5 705 Gs
|
0.45 kg / 1.00 pounds
452 g / 4.4 N
|
2.71 kg / 5.97 pounds
~0 Gs
|
| 2 mm |
1.64 kg / 3.61 pounds
4 205 Gs
|
0.25 kg / 0.54 pounds
245 g / 2.4 N
|
1.47 kg / 3.24 pounds
~0 Gs
|
| 3 mm |
0.89 kg / 1.97 pounds
3 106 Gs
|
0.13 kg / 0.29 pounds
134 g / 1.3 N
|
0.80 kg / 1.77 pounds
~0 Gs
|
| 5 mm |
0.31 kg / 0.67 pounds
1 816 Gs
|
0.05 kg / 0.10 pounds
46 g / 0.4 N
|
0.27 kg / 0.61 pounds
~0 Gs
|
| 10 mm |
0.04 kg / 0.10 pounds
690 Gs
|
0.01 kg / 0.01 pounds
7 g / 0.1 N
|
0.04 kg / 0.09 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 pounds
202 Gs
|
0.00 kg / 0.00 pounds
1 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
24 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
14 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
9 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
6 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
5 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
3 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MPL 20x3x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.0 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 20x3x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
51.34 km/h
(14.26 m/s)
|
0.09 J | |
| 30 mm |
88.88 km/h
(24.69 m/s)
|
0.27 J | |
| 50 mm |
114.74 km/h
(31.87 m/s)
|
0.46 J | |
| 100 mm |
162.27 km/h
(45.08 m/s)
|
0.91 J |
Table 9: Corrosion resistance
MPL 20x3x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 20x3x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 748 Mx | 17.5 µWb |
| Pc Coefficient | 0.32 | Low (Flat) |
Table 11: Submerged application
MPL 20x3x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.33 kg | Standard |
| Water (riverbed) |
2.67 kg
(+0.34 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical surface, the magnet holds just approx. 20-30% of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) severely limits the holding force.
3. Temperature resistance
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.32
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Strengths and weaknesses of Nd2Fe14B magnets.
Advantages
- They do not lose strength, even over around ten years – the drop in power is only ~1% (theoretically),
- They feature excellent resistance to weakening of magnetic properties when exposed to external magnetic sources,
- In other words, due to the metallic surface of nickel, the element gains a professional look,
- The surface of neodymium magnets generates a unique magnetic field – this is a distinguishing feature,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to freedom in forming and the capacity to adapt to individual projects,
- Huge importance in future technologies – they are used in mass storage devices, electric drive systems, diagnostic systems, also multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in small dimensions, which enables their usage in small systems
Disadvantages
- At strong impacts they can crack, therefore we recommend placing them in steel cases. A metal housing provides additional protection against damage and increases the magnet's durability.
- When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment. For use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- We recommend a housing - magnetic mechanism, due to difficulties in producing threads inside the magnet and complex forms.
- Health risk to health – tiny shards of magnets are risky, in case of ingestion, which is particularly important in the context of child health protection. Additionally, small elements of these devices can be problematic in diagnostics medical after entering the body.
- With large orders the cost of neodymium magnets is economically unviable,
Holding force characteristics
Maximum holding power of the magnet – what contributes to it?
- on a base made of structural steel, optimally conducting the magnetic flux
- with a cross-section of at least 10 mm
- with a plane perfectly flat
- with direct contact (no impurities)
- for force applied at a right angle (pull-off, not shear)
- in neutral thermal conditions
Magnet lifting force in use – key factors
- Space between magnet and steel – every millimeter of separation (caused e.g. by varnish or unevenness) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Load vector – maximum parameter is available only during perpendicular pulling. The force required to slide of the magnet along the surface is typically several times lower (approx. 1/5 of the lifting capacity).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet restricts the attraction force (the magnet "punches through" it).
- Material type – ideal substrate is high-permeability steel. Cast iron may generate lower lifting capacity.
- Smoothness – ideal contact is possible only on smooth steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
- Thermal factor – high temperature weakens pulling force. Exceeding the limit temperature can permanently damage the magnet.
Lifting capacity was determined with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a slight gap between the magnet and the plate lowers the holding force.
Warnings
Combustion hazard
Fire hazard: Rare earth powder is highly flammable. Avoid machining magnets in home conditions as this may cause fire.
Swallowing risk
Product intended for adults. Small elements pose a choking risk, leading to serious injuries. Keep out of reach of children and animals.
Do not overheat magnets
Avoid heat. NdFeB magnets are sensitive to heat. If you need resistance above 80°C, inquire about HT versions (H, SH, UH).
Safe distance
Do not bring magnets near a wallet, laptop, or screen. The magnetic field can destroy these devices and erase data from cards.
Pinching danger
Watch your fingers. Two powerful magnets will join instantly with a force of several hundred kilograms, crushing anything in their path. Be careful!
Pacemakers
Patients with a ICD have to maintain an safe separation from magnets. The magnetism can disrupt the operation of the life-saving device.
Safe operation
Handle with care. Rare earth magnets attract from a distance and snap with huge force, often faster than you can react.
Magnets are brittle
Despite metallic appearance, the material is brittle and not impact-resistant. Do not hit, as the magnet may shatter into sharp, dangerous pieces.
Magnetic interference
A powerful magnetic field disrupts the functioning of magnetometers in smartphones and GPS navigation. Maintain magnets close to a smartphone to avoid damaging the sensors.
Nickel coating and allergies
Certain individuals experience a contact allergy to Ni, which is the common plating for neodymium magnets. Frequent touching might lead to dermatitis. We suggest wear protective gloves.
