MPL 20x3x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020130
GTIN/EAN: 5906301811367
length
20 mm [±0,1 mm]
Width
3 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.9 g
Magnetization Direction
↑ axial
Load capacity
2.33 kg / 22.90 N
Magnetic Induction
370.68 mT / 3707 Gs
Coating
[NiCuNi] Nickel
0.394 ZŁ with VAT / pcs + price for transport
0.320 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
otherwise let us know by means of
inquiry form
through our site.
Parameters and shape of magnets can be checked using our
online calculation tool.
Same-day shipping for orders placed before 14:00.
Product card - MPL 20x3x2 / N38 - lamellar magnet
Specification / characteristics - MPL 20x3x2 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020130 |
| GTIN/EAN | 5906301811367 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 20 mm [±0,1 mm] |
| Width | 3 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.9 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.33 kg / 22.90 N |
| Magnetic Induction ~ ? | 370.68 mT / 3707 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the magnet - data
These values constitute the outcome of a mathematical analysis. Values rely on algorithms for the class Nd2Fe14B. Operational performance may differ. Use these data as a reference point during assembly planning.
Table 1: Static force (pull vs distance) - power drop
MPL 20x3x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3700 Gs
370.0 mT
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
warning |
| 1 mm |
2103 Gs
210.3 mT
|
0.75 kg / 1.66 lbs
752.3 g / 7.4 N
|
weak grip |
| 2 mm |
1172 Gs
117.2 mT
|
0.23 kg / 0.52 lbs
233.7 g / 2.3 N
|
weak grip |
| 3 mm |
721 Gs
72.1 mT
|
0.09 kg / 0.20 lbs
88.5 g / 0.9 N
|
weak grip |
| 5 mm |
345 Gs
34.5 mT
|
0.02 kg / 0.04 lbs
20.3 g / 0.2 N
|
weak grip |
| 10 mm |
101 Gs
10.1 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
weak grip |
| 15 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
weak grip |
| 20 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
| 30 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Sliding force (wall)
MPL 20x3x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 20x3x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 1.54 lbs
699.0 g / 6.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
|
Table 4: Material efficiency (substrate influence) - power losses
MPL 20x3x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
|
| 1 mm |
|
0.58 kg / 1.28 lbs
582.5 g / 5.7 N
|
| 2 mm |
|
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
|
| 3 mm |
|
1.75 kg / 3.85 lbs
1747.5 g / 17.1 N
|
| 5 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 10 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 11 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 12 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
Table 5: Thermal resistance (stability) - power drop
MPL 20x3x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
OK |
| 40 °C | -2.2% |
2.28 kg / 5.02 lbs
2278.7 g / 22.4 N
|
OK |
| 60 °C | -4.4% |
2.23 kg / 4.91 lbs
2227.5 g / 21.9 N
|
|
| 80 °C | -6.6% |
2.18 kg / 4.80 lbs
2176.2 g / 21.3 N
|
|
| 100 °C | -28.8% |
1.66 kg / 3.66 lbs
1659.0 g / 16.3 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 20x3x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.06 kg / 11.17 lbs
4 866 Gs
|
0.76 kg / 1.67 lbs
760 g / 7.5 N
|
N/A |
| 1 mm |
3.01 kg / 6.64 lbs
5 705 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
2.71 kg / 5.97 lbs
~0 Gs
|
| 2 mm |
1.64 kg / 3.61 lbs
4 205 Gs
|
0.25 kg / 0.54 lbs
245 g / 2.4 N
|
1.47 kg / 3.24 lbs
~0 Gs
|
| 3 mm |
0.89 kg / 1.97 lbs
3 106 Gs
|
0.13 kg / 0.29 lbs
134 g / 1.3 N
|
0.80 kg / 1.77 lbs
~0 Gs
|
| 5 mm |
0.31 kg / 0.67 lbs
1 816 Gs
|
0.05 kg / 0.10 lbs
46 g / 0.4 N
|
0.27 kg / 0.61 lbs
~0 Gs
|
| 10 mm |
0.04 kg / 0.10 lbs
690 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
202 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - warnings
MPL 20x3x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.0 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (kinetic energy) - warning
MPL 20x3x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
51.34 km/h
(14.26 m/s)
|
0.09 J | |
| 30 mm |
88.88 km/h
(24.69 m/s)
|
0.27 J | |
| 50 mm |
114.74 km/h
(31.87 m/s)
|
0.46 J | |
| 100 mm |
162.27 km/h
(45.08 m/s)
|
0.91 J |
Table 9: Anti-corrosion coating durability
MPL 20x3x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 20x3x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 748 Mx | 17.5 µWb |
| Pc Coefficient | 0.32 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 20x3x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.33 kg | Standard |
| Water (riverbed) |
2.67 kg
(+0.34 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Warning: On a vertical surface, the magnet holds only a fraction of its max power.
2. Steel saturation
*Thin steel (e.g. computer case) drastically limits the holding force.
3. Thermal stability
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.32
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more offers
Pros and cons of neodymium magnets.
Benefits
- They retain magnetic properties for around 10 years – the drop is just ~1% (based on simulations),
- Magnets effectively defend themselves against demagnetization caused by ambient magnetic noise,
- A magnet with a shiny nickel surface has better aesthetics,
- The surface of neodymium magnets generates a intense magnetic field – this is a distinguishing feature,
- Through (appropriate) combination of ingredients, they can achieve high thermal resistance, enabling functioning at temperatures approaching 230°C and above...
- Possibility of individual machining and adjusting to complex needs,
- Fundamental importance in advanced technology sectors – they serve a role in data components, electric motors, precision medical tools, also industrial machines.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which allows their use in compact constructions
Disadvantages
- To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material stable to moisture, when using outdoors
- Due to limitations in creating nuts and complex forms in magnets, we propose using a housing - magnetic mount.
- Possible danger related to microscopic parts of magnets are risky, in case of ingestion, which gains importance in the aspect of protecting the youngest. Additionally, tiny parts of these devices can be problematic in diagnostics medical when they are in the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Lifting parameters
Maximum magnetic pulling force – what contributes to it?
- with the application of a sheet made of special test steel, guaranteeing full magnetic saturation
- with a thickness minimum 10 mm
- with an ideally smooth contact surface
- without any clearance between the magnet and steel
- under vertical force direction (90-degree angle)
- in temp. approx. 20°C
Lifting capacity in practice – influencing factors
- Gap between magnet and steel – even a fraction of a millimeter of separation (caused e.g. by varnish or dirt) diminishes the magnet efficiency, often by half at just 0.5 mm.
- Pull-off angle – note that the magnet holds strongest perpendicularly. Under shear forces, the capacity drops drastically, often to levels of 20-30% of the nominal value.
- Substrate thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal restricts the attraction force (the magnet "punches through" it).
- Chemical composition of the base – mild steel gives the best results. Alloy admixtures reduce magnetic permeability and lifting capacity.
- Smoothness – full contact is obtained only on smooth steel. Rough texture create air cushions, reducing force.
- Thermal factor – high temperature weakens pulling force. Too high temperature can permanently demagnetize the magnet.
Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a minimal clearance between the magnet and the plate decreases the lifting capacity.
Warnings
Safe distance
Do not bring magnets near a purse, laptop, or TV. The magnetic field can destroy these devices and erase data from cards.
Dust explosion hazard
Machining of NdFeB material carries a risk of fire hazard. Magnetic powder oxidizes rapidly with oxygen and is difficult to extinguish.
Maximum temperature
Control the heat. Heating the magnet to high heat will ruin its properties and pulling force.
Danger to pacemakers
Health Alert: Neodymium magnets can deactivate heart devices and defibrillators. Do not approach if you have electronic implants.
Sensitization to coating
A percentage of the population experience a sensitization to Ni, which is the typical protective layer for neodymium magnets. Frequent touching can result in a rash. It is best to use protective gloves.
Phone sensors
Navigation devices and smartphones are extremely susceptible to magnetic fields. Direct contact with a powerful NdFeB magnet can permanently damage the sensors in your phone.
Crushing force
Danger of trauma: The attraction force is so immense that it can result in blood blisters, crushing, and broken bones. Use thick gloves.
Do not give to children
Always keep magnets away from children. Risk of swallowing is high, and the effects of magnets clamping inside the body are fatal.
Do not underestimate power
Handle magnets consciously. Their huge power can shock even experienced users. Stay alert and do not underestimate their force.
Magnets are brittle
Despite metallic appearance, the material is brittle and not impact-resistant. Avoid impacts, as the magnet may shatter into hazardous fragments.
