MPL 40x10x4x2[7/3.5] / N38 - lamellar magnet
lamellar magnet
Catalog no 020151
GTIN/EAN: 5906301811572
length
40 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
9.31 kg / 91.33 N
Magnetic Induction
275.57 mT / 2756 Gs
Coating
[NiCuNi] Nickel
9.21 ZŁ with VAT / pcs + price for transport
7.49 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
or contact us through
form
the contact page.
Lifting power as well as shape of magnetic components can be reviewed on our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
Technical - MPL 40x10x4x2[7/3.5] / N38 - lamellar magnet
Specification / characteristics - MPL 40x10x4x2[7/3.5] / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020151 |
| GTIN/EAN | 5906301811572 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 12 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 9.31 kg / 91.33 N |
| Magnetic Induction ~ ? | 275.57 mT / 2756 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the product - technical parameters
Presented values constitute the direct effect of a engineering analysis. Values were calculated on models for the material Nd2Fe14B. Real-world conditions might slightly deviate from the simulation results. Treat these data as a supplementary guide during assembly planning.
Table 1: Static force (pull vs gap) - power drop
MPL 40x10x4x2[7/3.5] / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2755 Gs
275.5 mT
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
warning |
| 1 mm |
2413 Gs
241.3 mT
|
7.14 kg / 15.75 pounds
7143.1 g / 70.1 N
|
warning |
| 2 mm |
2044 Gs
204.4 mT
|
5.13 kg / 11.31 pounds
5128.9 g / 50.3 N
|
warning |
| 3 mm |
1703 Gs
170.3 mT
|
3.56 kg / 7.85 pounds
3559.5 g / 34.9 N
|
warning |
| 5 mm |
1173 Gs
117.3 mT
|
1.69 kg / 3.72 pounds
1688.2 g / 16.6 N
|
safe |
| 10 mm |
522 Gs
52.2 mT
|
0.33 kg / 0.74 pounds
334.9 g / 3.3 N
|
safe |
| 15 mm |
277 Gs
27.7 mT
|
0.09 kg / 0.21 pounds
94.2 g / 0.9 N
|
safe |
| 20 mm |
163 Gs
16.3 mT
|
0.03 kg / 0.07 pounds
32.8 g / 0.3 N
|
safe |
| 30 mm |
69 Gs
6.9 mT
|
0.01 kg / 0.01 pounds
5.8 g / 0.1 N
|
safe |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 pounds
0.5 g / 0.0 N
|
safe |
Table 2: Shear hold (wall)
MPL 40x10x4x2[7/3.5] / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.86 kg / 4.11 pounds
1862.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.43 kg / 3.15 pounds
1428.0 g / 14.0 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 2.26 pounds
1026.0 g / 10.1 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.57 pounds
712.0 g / 7.0 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 0.75 pounds
338.0 g / 3.3 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 0.15 pounds
66.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 pounds
18.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 pounds
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 40x10x4x2[7/3.5] / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.79 kg / 6.16 pounds
2793.0 g / 27.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.86 kg / 4.11 pounds
1862.0 g / 18.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.05 pounds
931.0 g / 9.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
4.66 kg / 10.26 pounds
4655.0 g / 45.7 N
|
Table 4: Material efficiency (substrate influence) - power losses
MPL 40x10x4x2[7/3.5] / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.05 pounds
931.0 g / 9.1 N
|
| 1 mm |
|
2.33 kg / 5.13 pounds
2327.5 g / 22.8 N
|
| 2 mm |
|
4.66 kg / 10.26 pounds
4655.0 g / 45.7 N
|
| 3 mm |
|
6.98 kg / 15.39 pounds
6982.5 g / 68.5 N
|
| 5 mm |
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
| 10 mm |
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
| 11 mm |
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
| 12 mm |
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
Table 5: Thermal stability (stability) - resistance threshold
MPL 40x10x4x2[7/3.5] / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
OK |
| 40 °C | -2.2% |
9.11 kg / 20.07 pounds
9105.2 g / 89.3 N
|
OK |
| 60 °C | -4.4% |
8.90 kg / 19.62 pounds
8900.4 g / 87.3 N
|
|
| 80 °C | -6.6% |
8.70 kg / 19.17 pounds
8695.5 g / 85.3 N
|
|
| 100 °C | -28.8% |
6.63 kg / 14.61 pounds
6628.7 g / 65.0 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MPL 40x10x4x2[7/3.5] / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.71 kg / 41.25 pounds
4 164 Gs
|
2.81 kg / 6.19 pounds
2807 g / 27.5 N
|
N/A |
| 1 mm |
16.57 kg / 36.53 pounds
5 185 Gs
|
2.49 kg / 5.48 pounds
2486 g / 24.4 N
|
14.91 kg / 32.88 pounds
~0 Gs
|
| 2 mm |
14.36 kg / 31.65 pounds
4 826 Gs
|
2.15 kg / 4.75 pounds
2153 g / 21.1 N
|
12.92 kg / 28.48 pounds
~0 Gs
|
| 3 mm |
12.24 kg / 26.98 pounds
4 455 Gs
|
1.84 kg / 4.05 pounds
1836 g / 18.0 N
|
11.01 kg / 24.28 pounds
~0 Gs
|
| 5 mm |
8.61 kg / 18.98 pounds
3 737 Gs
|
1.29 kg / 2.85 pounds
1291 g / 12.7 N
|
7.75 kg / 17.08 pounds
~0 Gs
|
| 10 mm |
3.39 kg / 7.48 pounds
2 346 Gs
|
0.51 kg / 1.12 pounds
509 g / 5.0 N
|
3.05 kg / 6.73 pounds
~0 Gs
|
| 20 mm |
0.67 kg / 1.48 pounds
1 045 Gs
|
0.10 kg / 0.22 pounds
101 g / 1.0 N
|
0.61 kg / 1.34 pounds
~0 Gs
|
| 50 mm |
0.03 kg / 0.06 pounds
207 Gs
|
0.00 kg / 0.01 pounds
4 g / 0.0 N
|
0.02 kg / 0.05 pounds
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 pounds
138 Gs
|
0.00 kg / 0.00 pounds
2 g / 0.0 N
|
0.01 kg / 0.02 pounds
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 pounds
96 Gs
|
0.00 kg / 0.00 pounds
1 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 pounds
69 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
51 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
39 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MPL 40x10x4x2[7/3.5] / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 8.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 5.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 4.0 cm |
| Remote | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (cracking risk) - collision effects
MPL 40x10x4x2[7/3.5] / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.72 km/h
(7.98 m/s)
|
0.38 J | |
| 30 mm |
48.67 km/h
(13.52 m/s)
|
1.10 J | |
| 50 mm |
62.82 km/h
(17.45 m/s)
|
1.83 J | |
| 100 mm |
88.83 km/h
(24.68 m/s)
|
3.65 J |
Table 9: Corrosion resistance
MPL 40x10x4x2[7/3.5] / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 40x10x4x2[7/3.5] / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 9 840 Mx | 98.4 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 40x10x4x2[7/3.5] / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 9.31 kg | Standard |
| Water (riverbed) |
10.66 kg
(+1.35 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet holds merely approx. 20-30% of its max power.
2. Steel thickness impact
*Thin metal sheet (e.g. 0.5mm PC case) significantly reduces the holding force.
3. Thermal stability
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths as well as weaknesses of rare earth magnets.
Strengths
- Their power remains stable, and after approximately 10 years it drops only by ~1% (theoretically),
- Neodymium magnets are distinguished by extremely resistant to magnetic field loss caused by external magnetic fields,
- By using a smooth layer of nickel, the element has an aesthetic look,
- Neodymium magnets deliver maximum magnetic induction on a small area, which allows for strong attraction,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- In view of the option of free molding and customization to custom needs, NdFeB magnets can be created in a broad palette of shapes and sizes, which expands the range of possible applications,
- Significant place in future technologies – they find application in data components, drive modules, medical devices, as well as modern systems.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in small dimensions, which enables their usage in small systems
Weaknesses
- To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in force. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment - during use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- Limited ability of producing threads in the magnet and complex forms - recommended is a housing - mounting mechanism.
- Health risk related to microscopic parts of magnets pose a threat, if swallowed, which is particularly important in the context of child health protection. Furthermore, tiny parts of these magnets are able to be problematic in diagnostics medical when they are in the body.
- Due to complex production process, their price exceeds standard values,
Holding force characteristics
Highest magnetic holding force – what contributes to it?
- with the use of a yoke made of special test steel, guaranteeing full magnetic saturation
- possessing a thickness of at least 10 mm to avoid saturation
- with an ground touching surface
- under conditions of ideal adhesion (metal-to-metal)
- for force applied at a right angle (pull-off, not shear)
- at ambient temperature approx. 20 degrees Celsius
Practical aspects of lifting capacity – factors
- Distance – the presence of any layer (paint, tape, air) interrupts the magnetic circuit, which reduces capacity steeply (even by 50% at 0.5 mm).
- Force direction – remember that the magnet holds strongest perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the nominal value.
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Plate material – mild steel attracts best. Higher carbon content decrease magnetic properties and holding force.
- Plate texture – ground elements guarantee perfect abutment, which improves field saturation. Rough surfaces reduce efficiency.
- Thermal conditions – neodymium magnets have a negative temperature coefficient. At higher temperatures they are weaker, and in frost they can be stronger (up to a certain limit).
Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under shearing force the holding force is lower. Additionally, even a minimal clearance between the magnet’s surface and the plate lowers the load capacity.
Warnings
Handling rules
Handle with care. Neodymium magnets act from a distance and connect with huge force, often faster than you can react.
Data carriers
Intense magnetic fields can corrupt files on payment cards, HDDs, and storage devices. Stay away of at least 10 cm.
Compass and GPS
GPS units and mobile phones are highly sensitive to magnetic fields. Direct contact with a powerful NdFeB magnet can decalibrate the internal compass in your phone.
Avoid contact if allergic
Some people experience a contact allergy to Ni, which is the typical protective layer for NdFeB magnets. Frequent touching can result in an allergic reaction. We strongly advise wear protective gloves.
ICD Warning
Warning for patients: Strong magnetic fields disrupt electronics. Keep at least 30 cm distance or request help to handle the magnets.
Fire warning
Drilling and cutting of neodymium magnets carries a risk of fire risk. Magnetic powder oxidizes rapidly with oxygen and is hard to extinguish.
No play value
Neodymium magnets are not toys. Accidental ingestion of a few magnets may result in them pinching intestinal walls, which constitutes a direct threat to life and necessitates urgent medical intervention.
Bone fractures
Danger of trauma: The attraction force is so immense that it can result in blood blisters, pinching, and broken bones. Protective gloves are recommended.
Maximum temperature
Standard neodymium magnets (N-type) undergo demagnetization when the temperature goes above 80°C. This process is irreversible.
Magnets are brittle
Neodymium magnets are sintered ceramics, which means they are prone to chipping. Collision of two magnets will cause them breaking into small pieces.
