tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for fishing F400 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight, solid steel casing are excellent for use in variable and difficult climate conditions, including during snow and rain see more...

magnetic holders

Holders with magnets can be applied to enhance production, underwater discoveries, or searching for space rocks from gold see more...

Enjoy shipping of your order on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

MPL 40x10x4x2[7/3.5] / N38 - neodymium magnet

lamellar magnet

catalog number 020151

GTIN: 5906301811572

no reviews

length

40 mm [±0,1 mm]

width

10 mm [±0,1 mm]

height

4 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

6.32 kg / 61.98 N

magnetic induction ~

275.57 mT / 2,756 Gs

max. temperature

≤ 80 °C

9.21 gross price (including VAT) / pcs +

7.49 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
7.49 ZŁ
9.21 ZŁ
price from 81 pcs
7.04 ZŁ
8.66 ZŁ
price from 294 pcs
6.59 ZŁ
8.11 ZŁ

Do you have a problem in choosing?

Call us tel: +48 888 99 98 98 or contact us via form on our website. You can check the strength as well as the shape of magnet in our magnetic calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 40x10x4x2[7/3.5] / N38 ↑ axial

Characteristics: lamellar magnet 40x10x4x2[7/3.5] / N38 ↑ axial
Properties
Values
catalog number
020151
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
40 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
4 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
6.32 kg / 61.98 N
magnetic induction ~ ?
275.57 mT / 2,756 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
12.00 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Flat neodymium magnets i.e. MPL 40x10x4x2[7/3.5] / N38 are magnets created from neodymium in a rectangular form. They are valued for their very strong magnetic properties, which surpass standard iron magnets.
Due to their power, flat magnets are frequently used in structures that require exceptional adhesion.
Most common temperature resistance of flat magnets is 80°C, but with larger dimensions, this value rises.
Additionally, flat magnets usually have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their durability.
The magnet labeled MPL 40x10x4x2[7/3.5] / N38 and a lifting capacity of 6.32 kg which weighs a mere 12.00 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages compared to other magnet shapes, which lead to them being a perfect solution for many applications:
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These are often used in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: Their flat shape simplifies mounting, particularly when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits designers greater flexibility in arranging them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, minimizing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In some cases, other shapes, like cylindrical or spherical, may be more appropriate.
How do magnets work? Magnets attract ferromagnetic materials, such as iron, objects containing nickel, materials with cobalt or special alloys of ferromagnetic metals. Moreover, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of these objects creates attractive forces, which attract materials containing nickel or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are regularly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastic, glass items, wood or most gemstones. Furthermore, magnets do not affect certain metals, such as copper items, aluminum materials, copper, aluminum, and gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even medical equipment, like pacemakers. Therefore, it is important to avoid placing magnets near such devices.

List recommended items

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time. After 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Significant importance in modern technologies – find application in computer drives, electric motors, medical apparatus and other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets are risky, when accidentally ingested, which becomes significant in the context of child safety. It's also worth noting that tiny parts of these devices are able to hinder the diagnostic process in case of swallowing.

Caution with Neodymium Magnets

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

 Maintain neodymium magnets far from children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnetic are especially fragile, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If the joining of neodymium magnets is not controlled, at that time they may crumble and also crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

To show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98