MPL 40x10x4x2[7/3.5] / N38 - lamellar magnet
lamellar magnet
Catalog no 020151
GTIN/EAN: 5906301811572
length
40 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
9.31 kg / 91.33 N
Magnetic Induction
275.57 mT / 2756 Gs
Coating
[NiCuNi] Nickel
9.21 ZŁ with VAT / pcs + price for transport
7.49 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
alternatively let us know via
contact form
the contact page.
Force as well as appearance of a neodymium magnet can be tested with our
modular calculator.
Same-day processing for orders placed before 14:00.
Technical of the product - MPL 40x10x4x2[7/3.5] / N38 - lamellar magnet
Specification / characteristics - MPL 40x10x4x2[7/3.5] / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020151 |
| GTIN/EAN | 5906301811572 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 12 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 9.31 kg / 91.33 N |
| Magnetic Induction ~ ? | 275.57 mT / 2756 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the product - data
The following information constitute the result of a mathematical calculation. Results were calculated on algorithms for the class Nd2Fe14B. Real-world performance might slightly differ. Treat these calculations as a preliminary roadmap during assembly planning.
Table 1: Static pull force (force vs distance) - interaction chart
MPL 40x10x4x2[7/3.5] / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2755 Gs
275.5 mT
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
strong |
| 1 mm |
2413 Gs
241.3 mT
|
7.14 kg / 15.75 LBS
7143.1 g / 70.1 N
|
strong |
| 2 mm |
2044 Gs
204.4 mT
|
5.13 kg / 11.31 LBS
5128.9 g / 50.3 N
|
strong |
| 3 mm |
1703 Gs
170.3 mT
|
3.56 kg / 7.85 LBS
3559.5 g / 34.9 N
|
strong |
| 5 mm |
1173 Gs
117.3 mT
|
1.69 kg / 3.72 LBS
1688.2 g / 16.6 N
|
safe |
| 10 mm |
522 Gs
52.2 mT
|
0.33 kg / 0.74 LBS
334.9 g / 3.3 N
|
safe |
| 15 mm |
277 Gs
27.7 mT
|
0.09 kg / 0.21 LBS
94.2 g / 0.9 N
|
safe |
| 20 mm |
163 Gs
16.3 mT
|
0.03 kg / 0.07 LBS
32.8 g / 0.3 N
|
safe |
| 30 mm |
69 Gs
6.9 mT
|
0.01 kg / 0.01 LBS
5.8 g / 0.1 N
|
safe |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 LBS
0.5 g / 0.0 N
|
safe |
Table 2: Slippage capacity (vertical surface)
MPL 40x10x4x2[7/3.5] / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.86 kg / 4.11 LBS
1862.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.43 kg / 3.15 LBS
1428.0 g / 14.0 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 2.26 LBS
1026.0 g / 10.1 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.57 LBS
712.0 g / 7.0 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 0.75 LBS
338.0 g / 3.3 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 0.15 LBS
66.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 LBS
18.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 LBS
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MPL 40x10x4x2[7/3.5] / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.79 kg / 6.16 LBS
2793.0 g / 27.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.86 kg / 4.11 LBS
1862.0 g / 18.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.05 LBS
931.0 g / 9.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
4.66 kg / 10.26 LBS
4655.0 g / 45.7 N
|
Table 4: Material efficiency (substrate influence) - power losses
MPL 40x10x4x2[7/3.5] / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.05 LBS
931.0 g / 9.1 N
|
| 1 mm |
|
2.33 kg / 5.13 LBS
2327.5 g / 22.8 N
|
| 2 mm |
|
4.66 kg / 10.26 LBS
4655.0 g / 45.7 N
|
| 3 mm |
|
6.98 kg / 15.39 LBS
6982.5 g / 68.5 N
|
| 5 mm |
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
| 10 mm |
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
| 11 mm |
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
| 12 mm |
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
Table 5: Thermal stability (stability) - thermal limit
MPL 40x10x4x2[7/3.5] / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
OK |
| 40 °C | -2.2% |
9.11 kg / 20.07 LBS
9105.2 g / 89.3 N
|
OK |
| 60 °C | -4.4% |
8.90 kg / 19.62 LBS
8900.4 g / 87.3 N
|
|
| 80 °C | -6.6% |
8.70 kg / 19.17 LBS
8695.5 g / 85.3 N
|
|
| 100 °C | -28.8% |
6.63 kg / 14.61 LBS
6628.7 g / 65.0 N
|
Table 6: Two magnets (repulsion) - forces in the system
MPL 40x10x4x2[7/3.5] / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.71 kg / 41.25 LBS
4 164 Gs
|
2.81 kg / 6.19 LBS
2807 g / 27.5 N
|
N/A |
| 1 mm |
16.57 kg / 36.53 LBS
5 185 Gs
|
2.49 kg / 5.48 LBS
2486 g / 24.4 N
|
14.91 kg / 32.88 LBS
~0 Gs
|
| 2 mm |
14.36 kg / 31.65 LBS
4 826 Gs
|
2.15 kg / 4.75 LBS
2153 g / 21.1 N
|
12.92 kg / 28.48 LBS
~0 Gs
|
| 3 mm |
12.24 kg / 26.98 LBS
4 455 Gs
|
1.84 kg / 4.05 LBS
1836 g / 18.0 N
|
11.01 kg / 24.28 LBS
~0 Gs
|
| 5 mm |
8.61 kg / 18.98 LBS
3 737 Gs
|
1.29 kg / 2.85 LBS
1291 g / 12.7 N
|
7.75 kg / 17.08 LBS
~0 Gs
|
| 10 mm |
3.39 kg / 7.48 LBS
2 346 Gs
|
0.51 kg / 1.12 LBS
509 g / 5.0 N
|
3.05 kg / 6.73 LBS
~0 Gs
|
| 20 mm |
0.67 kg / 1.48 LBS
1 045 Gs
|
0.10 kg / 0.22 LBS
101 g / 1.0 N
|
0.61 kg / 1.34 LBS
~0 Gs
|
| 50 mm |
0.03 kg / 0.06 LBS
207 Gs
|
0.00 kg / 0.01 LBS
4 g / 0.0 N
|
0.02 kg / 0.05 LBS
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 LBS
138 Gs
|
0.00 kg / 0.00 LBS
2 g / 0.0 N
|
0.01 kg / 0.02 LBS
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 LBS
96 Gs
|
0.00 kg / 0.00 LBS
1 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 LBS
69 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
51 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
39 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MPL 40x10x4x2[7/3.5] / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 8.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 5.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 4.0 cm |
| Car key | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - collision effects
MPL 40x10x4x2[7/3.5] / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.72 km/h
(7.98 m/s)
|
0.38 J | |
| 30 mm |
48.67 km/h
(13.52 m/s)
|
1.10 J | |
| 50 mm |
62.82 km/h
(17.45 m/s)
|
1.83 J | |
| 100 mm |
88.83 km/h
(24.68 m/s)
|
3.65 J |
Table 9: Coating parameters (durability)
MPL 40x10x4x2[7/3.5] / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 40x10x4x2[7/3.5] / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 9 840 Mx | 98.4 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Submerged application
MPL 40x10x4x2[7/3.5] / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 9.31 kg | Standard |
| Water (riverbed) |
10.66 kg
(+1.35 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet holds merely a fraction of its nominal pull.
2. Steel saturation
*Thin steel (e.g. computer case) severely weakens the holding force.
3. Heat tolerance
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also offers
Strengths as well as weaknesses of rare earth magnets.
Advantages
- They have stable power, and over more than ten years their attraction force decreases symbolically – ~1% (in testing),
- Neodymium magnets are exceptionally resistant to loss of magnetic properties caused by external magnetic fields,
- By applying a decorative layer of silver, the element has an professional look,
- Neodymium magnets deliver maximum magnetic induction on a contact point, which ensures high operational effectiveness,
- Through (appropriate) combination of ingredients, they can achieve high thermal strength, enabling operation at temperatures approaching 230°C and above...
- Considering the ability of accurate molding and adaptation to custom requirements, magnetic components can be produced in a broad palette of geometric configurations, which makes them more universal,
- Huge importance in electronics industry – they are used in magnetic memories, motor assemblies, advanced medical instruments, also technologically advanced constructions.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Cons
- To avoid cracks upon strong impacts, we suggest using special steel holders. Such a solution protects the magnet and simultaneously increases its durability.
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we advise using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Due to limitations in producing nuts and complex forms in magnets, we propose using a housing - magnetic mechanism.
- Potential hazard resulting from small fragments of magnets are risky, if swallowed, which is particularly important in the context of child safety. It is also worth noting that small components of these magnets can complicate diagnosis medical after entering the body.
- With mass production the cost of neodymium magnets is a challenge,
Lifting parameters
Optimal lifting capacity of a neodymium magnet – what affects it?
- with the application of a sheet made of special test steel, ensuring full magnetic saturation
- with a thickness no less than 10 mm
- characterized by even structure
- under conditions of no distance (metal-to-metal)
- during pulling in a direction vertical to the mounting surface
- at ambient temperature approx. 20 degrees Celsius
Lifting capacity in practice – influencing factors
- Distance – existence of foreign body (rust, tape, gap) acts as an insulator, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Force direction – catalog parameter refers to pulling vertically. When slipping, the magnet exhibits much less (often approx. 20-30% of nominal force).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux penetrates through instead of converting into lifting capacity.
- Material composition – different alloys reacts the same. Alloy additives worsen the interaction with the magnet.
- Base smoothness – the smoother and more polished the surface, the better the adhesion and higher the lifting capacity. Unevenness acts like micro-gaps.
- Heat – NdFeB sinters have a sensitivity to temperature. At higher temperatures they lose power, and at low temperatures they can be stronger (up to a certain limit).
Lifting capacity was determined using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the holding force is lower. In addition, even a small distance between the magnet’s surface and the plate lowers the holding force.
Warnings
Thermal limits
Regular neodymium magnets (N-type) lose power when the temperature goes above 80°C. This process is irreversible.
Physical harm
Large magnets can crush fingers instantly. Never place your hand between two attracting surfaces.
Caution required
Handle magnets with awareness. Their powerful strength can shock even experienced users. Be vigilant and respect their power.
Dust explosion hazard
Fire hazard: Rare earth powder is highly flammable. Do not process magnets in home conditions as this risks ignition.
Material brittleness
Despite the nickel coating, the material is brittle and not impact-resistant. Do not hit, as the magnet may shatter into sharp, dangerous pieces.
Sensitization to coating
Certain individuals experience a contact allergy to nickel, which is the common plating for NdFeB magnets. Frequent touching may cause an allergic reaction. We suggest use protective gloves.
Protect data
Powerful magnetic fields can destroy records on credit cards, HDDs, and storage devices. Maintain a gap of min. 10 cm.
GPS Danger
Be aware: neodymium magnets produce a field that confuses sensitive sensors. Maintain a safe distance from your mobile, device, and GPS.
Product not for children
Only for adults. Tiny parts pose a choking risk, leading to intestinal necrosis. Keep away from kids and pets.
Medical interference
Health Alert: Strong magnets can turn off pacemakers and defibrillators. Stay away if you have medical devices.
