tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for searching F300 GOLD

Where to purchase powerful magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in difficult, demanding weather conditions, including snow and rain more information...

magnetic holders

Magnetic holders can be used to facilitate manufacturing, underwater exploration, or searching for meteorites made of ore see more...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 6x6 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010094

GTIN: 5906301810933

5

Diameter Ø [±0,1 mm]

6 mm

Height [±0,1 mm]

6 mm

Weight

1.27 g

Magnetization Direction

↑ axial

Load capacity

1.99 kg / 19.52 N

Magnetic Induction

553.38 mT

Coating

[NiCuNi] nickel

0.70 with VAT / pcs + price for transport

0.57 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.57 ZŁ
0.70 ZŁ
price from 884 pcs
0.51 ZŁ
0.63 ZŁ
price from 1768 pcs
0.50 ZŁ
0.62 ZŁ

Not sure where to buy?

Contact us by phone +48 888 99 98 98 if you prefer drop us a message by means of contact form our website.
Weight along with appearance of neodymium magnets can be calculated with our force calculator.

Same-day processing for orders placed before 14:00.

MW 6x6 / N38 - cylindrical magnet

Specification/characteristics MW 6x6 / N38 - cylindrical magnet
properties
values
Cat. no.
010094
GTIN
5906301810933
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
6 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
1.27 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.99 kg / 19.52 N
Magnetic Induction ~ ?
553.38 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 6x6 / N38 are magnets created of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which outperform traditional ferrite magnets. Thanks to their strength, they are frequently used in devices that require strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet named MW 6x6 / N38 and a magnetic lifting capacity of 1.99 kg has a weight of only 1.27 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the website for the latest information and promotions, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are very practical in various applications, they can also pose certain risk. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin and other materials, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and thermal processing. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as epoxy, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical magnet with classification N50 and N52 is a strong and extremely powerful metallic component in the form of a cylinder, featuring high force and universal applicability. Attractive price, availability, durability and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (according to literature),
  • They remain magnetized despite exposure to strong external fields,
  • Because of the lustrous layer of nickel, the component looks high-end,
  • They have exceptional magnetic induction on the surface of the magnet,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for accurate shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Wide application in new technology industries – they serve a purpose in computer drives, electric motors, diagnostic apparatus and other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time increases its overall strength,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • Limited ability to create threads in the magnet – the use of a external casing is recommended,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is notable in the family environments. Additionally, tiny components from these products have the potential to hinder health screening if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are extremely delicate, they easily crack and can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98