tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for searching F300 GOLD

Where to buy very strong magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in variable and difficult weather, including snow and rain see...

magnets with holders

Holders with magnets can be applied to improve manufacturing, exploring underwater areas, or searching for space rocks made of ore check...

Enjoy delivery of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 6x6 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010094

GTIN: 5906301810933

5

Diameter Ø [±0,1 mm]

6 mm

Height [±0,1 mm]

6 mm

Weight

1.27 g

Magnetization Direction

↑ axial

Load capacity

1.99 kg / 19.52 N

Magnetic Induction

553.38 mT

Coating

[NiCuNi] nickel

0.70 with VAT / pcs + price for transport

0.57 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.57 ZŁ
0.70 ZŁ
price from 884 pcs
0.51 ZŁ
0.63 ZŁ
price from 1768 pcs
0.50 ZŁ
0.62 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 6x6 / N38 - cylindrical magnet

Specification/characteristics MW 6x6 / N38 - cylindrical magnet
properties
values
Cat. no.
010094
GTIN
5906301810933
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
6 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
1.27 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.99 kg / 19.52 N
Magnetic Induction ~ ?
553.38 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 6x6 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed ordinary ferrite magnets. Thanks to their power, they are often used in products that require powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet with the designation MW 6x6 / N38 with a magnetic lifting capacity of 1.99 kg has a weight of only 1.27 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the current information and offers, and before visiting, please call.
Although, cylindrical neodymium magnets are practical in many applications, they can also constitute certain risk. Due to their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin as well as other surfaces, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with other metals and then shaping and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as gold, to shield them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose power over time - after approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in advanced technologically fields – are used in HDD drives, electric motors, medical devices or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets pose a threat, in case of ingestion, which becomes significant in the aspect of protecting young children. It's also worth noting that tiny parts of these devices are able to be problematic in medical diagnosis in case of swallowing.

Be Cautious with Neodymium Magnets

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are highly susceptible to damage, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets jump and also clash mutually within a distance of several to almost 10 cm from each other.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are the strongest magnets ever created, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Pay attention!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98