MW 6x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010094
GTIN/EAN: 5906301810933
Diameter Ø
6 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
1.27 g
Magnetization Direction
↑ axial
Load capacity
1.14 kg / 11.18 N
Magnetic Induction
553.38 mT / 5534 Gs
Coating
[NiCuNi] Nickel
0.677 ZŁ with VAT / pcs + price for transport
0.550 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
otherwise send us a note using
request form
our website.
Lifting power and structure of magnetic components can be reviewed on our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
Physical properties - MW 6x6 / N38 - cylindrical magnet
Specification / characteristics - MW 6x6 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010094 |
| GTIN/EAN | 5906301810933 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 6 mm [±0,1 mm] |
| Height | 6 mm [±0,1 mm] |
| Weight | 1.27 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.14 kg / 11.18 N |
| Magnetic Induction ~ ? | 553.38 mT / 5534 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the magnet - report
These values constitute the outcome of a physical calculation. Values rely on algorithms for the material Nd2Fe14B. Real-world conditions may differ from theoretical values. Treat these data as a reference point during assembly planning.
Table 1: Static force (pull vs distance) - interaction chart
MW 6x6 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
5527 Gs
552.7 mT
|
1.14 kg / 1140.0 g
11.2 N
|
safe |
| 1 mm |
3738 Gs
373.8 mT
|
0.52 kg / 521.5 g
5.1 N
|
safe |
| 2 mm |
2366 Gs
236.6 mT
|
0.21 kg / 209.0 g
2.0 N
|
safe |
| 3 mm |
1498 Gs
149.8 mT
|
0.08 kg / 83.7 g
0.8 N
|
safe |
| 5 mm |
665 Gs
66.5 mT
|
0.02 kg / 16.5 g
0.2 N
|
safe |
| 10 mm |
155 Gs
15.5 mT
|
0.00 kg / 0.9 g
0.0 N
|
safe |
| 15 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
safe |
| 20 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
Table 2: Shear load (vertical surface)
MW 6x6 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.23 kg / 228.0 g
2.2 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 42.0 g
0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MW 6x6 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.34 kg / 342.0 g
3.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.23 kg / 228.0 g
2.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.11 kg / 114.0 g
1.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.57 kg / 570.0 g
5.6 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MW 6x6 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.11 kg / 114.0 g
1.1 N
|
| 1 mm |
|
0.29 kg / 285.0 g
2.8 N
|
| 2 mm |
|
0.57 kg / 570.0 g
5.6 N
|
| 5 mm |
|
1.14 kg / 1140.0 g
11.2 N
|
| 10 mm |
|
1.14 kg / 1140.0 g
11.2 N
|
Table 5: Working in heat (stability) - thermal limit
MW 6x6 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.14 kg / 1140.0 g
11.2 N
|
OK |
| 40 °C | -2.2% |
1.11 kg / 1114.9 g
10.9 N
|
OK |
| 60 °C | -4.4% |
1.09 kg / 1089.8 g
10.7 N
|
OK |
| 80 °C | -6.6% |
1.06 kg / 1064.8 g
10.4 N
|
|
| 100 °C | -28.8% |
0.81 kg / 811.7 g
8.0 N
|
Table 6: Two magnets (repulsion) - field range
MW 6x6 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
5.32 kg / 5324 g
52.2 N
5 995 Gs
|
N/A |
| 1 mm |
3.70 kg / 3705 g
36.3 N
9 220 Gs
|
3.33 kg / 3334 g
32.7 N
~0 Gs
|
| 2 mm |
2.44 kg / 2436 g
23.9 N
7 476 Gs
|
2.19 kg / 2192 g
21.5 N
~0 Gs
|
| 3 mm |
1.55 kg / 1552 g
15.2 N
5 968 Gs
|
1.40 kg / 1397 g
13.7 N
~0 Gs
|
| 5 mm |
0.61 kg / 614 g
6.0 N
3 755 Gs
|
0.55 kg / 553 g
5.4 N
~0 Gs
|
| 10 mm |
0.08 kg / 77 g
0.8 N
1 330 Gs
|
0.07 kg / 69 g
0.7 N
~0 Gs
|
| 20 mm |
0.00 kg / 4 g
0.0 N
311 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
31 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 6x6 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.0 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (cracking risk) - collision effects
MW 6x6 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
30.23 km/h
(8.40 m/s)
|
0.04 J | |
| 30 mm |
52.34 km/h
(14.54 m/s)
|
0.13 J | |
| 50 mm |
67.56 km/h
(18.77 m/s)
|
0.22 J | |
| 100 mm |
95.55 km/h
(26.54 m/s)
|
0.45 J |
Table 9: Anti-corrosion coating durability
MW 6x6 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 6x6 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 613 Mx | 16.1 µWb |
| Pc Coefficient | 0.89 | High (Stable) |
Table 11: Physics of underwater searching
MW 6x6 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.14 kg | Standard |
| Water (riverbed) |
1.31 kg
(+0.17 kg Buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet retains merely approx. 20-30% of its nominal pull.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) drastically reduces the holding force.
3. Heat tolerance
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.89
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more proposals
Advantages as well as disadvantages of neodymium magnets.
Advantages
- They do not lose magnetism, even during around ten years – the reduction in power is only ~1% (theoretically),
- Magnets very well defend themselves against loss of magnetization caused by ambient magnetic noise,
- Thanks to the glossy finish, the layer of Ni-Cu-Ni, gold-plated, or silver-plated gives an clean appearance,
- Neodymium magnets generate maximum magnetic induction on a contact point, which increases force concentration,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can function (depending on the shape) even at a temperature of 230°C or more...
- Due to the ability of accurate molding and customization to unique solutions, NdFeB magnets can be modeled in a wide range of geometric configurations, which amplifies use scope,
- Fundamental importance in modern industrial fields – they are utilized in computer drives, motor assemblies, advanced medical instruments, also industrial machines.
- Thanks to their power density, small magnets offer high operating force, occupying minimum space,
Cons
- To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They oxidize in a humid environment - during use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- Due to limitations in creating nuts and complex forms in magnets, we propose using casing - magnetic mechanism.
- Health risk resulting from small fragments of magnets are risky, if swallowed, which is particularly important in the aspect of protecting the youngest. It is also worth noting that small components of these products are able to be problematic in diagnostics medical when they are in the body.
- With budget limitations the cost of neodymium magnets is a challenge,
Holding force characteristics
Best holding force of the magnet in ideal parameters – what contributes to it?
- with the application of a yoke made of special test steel, ensuring full magnetic saturation
- with a thickness no less than 10 mm
- with an ideally smooth contact surface
- under conditions of no distance (metal-to-metal)
- under vertical force vector (90-degree angle)
- at conditions approx. 20°C
Practical aspects of lifting capacity – factors
- Distance (betwixt the magnet and the plate), because even a tiny clearance (e.g. 0.5 mm) leads to a decrease in lifting capacity by up to 50% (this also applies to varnish, rust or debris).
- Force direction – declared lifting capacity refers to pulling vertically. When slipping, the magnet holds much less (often approx. 20-30% of nominal force).
- Base massiveness – insufficiently thick steel causes magnetic saturation, causing part of the flux to be escaped to the other side.
- Material composition – different alloys attracts identically. High carbon content weaken the interaction with the magnet.
- Plate texture – ground elements ensure maximum contact, which increases force. Rough surfaces weaken the grip.
- Thermal factor – hot environment reduces magnetic field. Too high temperature can permanently demagnetize the magnet.
Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under shearing force the load capacity is reduced by as much as fivefold. In addition, even a minimal clearance between the magnet and the plate lowers the lifting capacity.
Safety rules for work with neodymium magnets
Heat sensitivity
Avoid heat. NdFeB magnets are susceptible to heat. If you need resistance above 80°C, ask us about special high-temperature series (H, SH, UH).
Swallowing risk
Absolutely store magnets out of reach of children. Risk of swallowing is high, and the consequences of magnets connecting inside the body are tragic.
GPS and phone interference
A strong magnetic field interferes with the operation of compasses in smartphones and GPS navigation. Maintain magnets near a device to avoid damaging the sensors.
Magnetic media
Data protection: Neodymium magnets can damage payment cards and sensitive devices (pacemakers, hearing aids, mechanical watches).
Pacemakers
People with a pacemaker should maintain an large gap from magnets. The magnetism can disrupt the operation of the implant.
Metal Allergy
Allergy Notice: The nickel-copper-nickel coating consists of nickel. If redness happens, cease handling magnets and use protective gear.
Fragile material
Despite metallic appearance, neodymium is brittle and cannot withstand shocks. Avoid impacts, as the magnet may shatter into hazardous fragments.
Bodily injuries
Mind your fingers. Two large magnets will snap together instantly with a force of several hundred kilograms, crushing everything in their path. Exercise extreme caution!
Handling rules
Handle with care. Neodymium magnets act from a long distance and connect with huge force, often quicker than you can move away.
Fire warning
Machining of neodymium magnets poses a fire risk. Magnetic powder reacts violently with oxygen and is hard to extinguish.
