tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All magnesy on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for searching F300 GOLD

Where to buy powerful magnet? Magnet holders in airtight, solid steel casing are excellent for use in difficult weather conditions, including during snow and rain more...

magnets with holders

Magnetic holders can be used to facilitate manufacturing, underwater exploration, or searching for meteorites made of ore read...

Enjoy shipping of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships tomorrow

MW 6x6 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010094

GTIN: 5906301810933

5

Diameter Ø [±0,1 mm]

6 mm

Height [±0,1 mm]

6 mm

Weight

1.27 g

Magnetization Direction

↑ axial

Load capacity

1.99 kg / 19.52 N

Magnetic Induction

553.38 mT

Coating

[NiCuNi] nickel

0.677 with VAT / pcs + price for transport

0.550 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.550 ZŁ
0.677 ZŁ
price from 884 pcs
0.495 ZŁ
0.609 ZŁ
price from 1768 pcs
0.484 ZŁ
0.595 ZŁ

Do you have problems deciding?

Pick up the phone and ask +48 22 499 98 98 if you prefer contact us using contact form the contact section.
Force as well as shape of magnetic components can be analyzed on our our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

MW 6x6 / N38 - cylindrical magnet

Specification/characteristics MW 6x6 / N38 - cylindrical magnet
properties
values
Cat. no.
010094
GTIN
5906301810933
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
6 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
1.27 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.99 kg / 19.52 N
Magnetic Induction ~ ?
553.38 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Our cylinder magnets are made of the strongest magnetic material in the world. This ensures huge pull force while maintaining compact dimensions. Model MW 6x6 / N38 has a pull force of approx. 1.99 kg. The cylindrical form makes them ideal for mounting in drilled holes, generators and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
The best and safest method is gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Professional industrial adhesives are best, which are safe for the anti-corrosion layer. Do not hit the magnets, as neodymium is a ceramic sinter and is prone to chipping upon impact.
The grade symbol (e.g. N38, N52) defines the magnetic energy density of the material. A higher value means more power for the same size. The universal option is N38, which provides an optimal price-to-power ratio. For demanding applications, we recommend grade N52, which is the strongest commercially available sinter.
Neodymium magnets are coated with a protective layer of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects against air humidity. However, they are not fully waterproof. With constant contact with water or rain, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
Cylindrical magnets are a key component of many modern machines. They are used in generators and wind turbines and in filters catching metal filings. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
Standard neodymium magnets (grade N) work safely up to 80°C. Above this value, the magnet loses its strength. If you need resistance to higher temperatures (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). Please note that magnets are sensitive to rapid temperature changes.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous pulling force, neodymium magnets offer the following advantages:

  • They do not lose their power around 10 years – the reduction of lifting capacity is only ~1% (theoretically),
  • They protect against demagnetization induced by ambient magnetic influence very well,
  • By applying a reflective layer of silver, the element gains a sleek look,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for accurate shaping as well as adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Important function in advanced technical fields – they are used in computer drives, electromechanical systems, healthcare devices and other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall robustness,
  • They lose power at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Health risk due to small fragments may arise, in case of ingestion, which is notable in the health of young users. Moreover, tiny components from these devices have the potential to hinder health screening if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

What influences lifting capacity in practice

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate lowers the load capacity.

Safety Precautions

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a significant injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or a fracture.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are characterized by their fragility, which can cause them to crumble.

Magnets made of neodymium are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Safety precautions!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98