MW 6x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010094
GTIN/EAN: 5906301810933
Diameter Ø
6 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
1.27 g
Magnetization Direction
↑ axial
Load capacity
1.14 kg / 11.18 N
Magnetic Induction
553.38 mT / 5534 Gs
Coating
[NiCuNi] Nickel
0.677 ZŁ with VAT / pcs + price for transport
0.550 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
if you prefer drop us a message using
our online form
our website.
Parameters along with structure of a magnet can be tested with our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
Technical details - MW 6x6 / N38 - cylindrical magnet
Specification / characteristics - MW 6x6 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010094 |
| GTIN/EAN | 5906301810933 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 6 mm [±0,1 mm] |
| Height | 6 mm [±0,1 mm] |
| Weight | 1.27 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.14 kg / 11.18 N |
| Magnetic Induction ~ ? | 553.38 mT / 5534 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the product - data
Presented information represent the direct effect of a physical simulation. Results rely on models for the class Nd2Fe14B. Operational parameters might slightly differ from theoretical values. Please consider these calculations as a reference point for designers.
Table 1: Static pull force (pull vs gap) - power drop
MW 6x6 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5527 Gs
552.7 mT
|
1.14 kg / 2.51 pounds
1140.0 g / 11.2 N
|
weak grip |
| 1 mm |
3738 Gs
373.8 mT
|
0.52 kg / 1.15 pounds
521.5 g / 5.1 N
|
weak grip |
| 2 mm |
2366 Gs
236.6 mT
|
0.21 kg / 0.46 pounds
209.0 g / 2.0 N
|
weak grip |
| 3 mm |
1498 Gs
149.8 mT
|
0.08 kg / 0.18 pounds
83.7 g / 0.8 N
|
weak grip |
| 5 mm |
665 Gs
66.5 mT
|
0.02 kg / 0.04 pounds
16.5 g / 0.2 N
|
weak grip |
| 10 mm |
155 Gs
15.5 mT
|
0.00 kg / 0.00 pounds
0.9 g / 0.0 N
|
weak grip |
| 15 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.00 pounds
0.1 g / 0.0 N
|
weak grip |
| 20 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
Table 2: Slippage load (wall)
MW 6x6 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.23 kg / 0.50 pounds
228.0 g / 2.2 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.23 pounds
104.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 0.09 pounds
42.0 g / 0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 pounds
16.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 pounds
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MW 6x6 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.34 kg / 0.75 pounds
342.0 g / 3.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.23 kg / 0.50 pounds
228.0 g / 2.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.11 kg / 0.25 pounds
114.0 g / 1.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.57 kg / 1.26 pounds
570.0 g / 5.6 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 6x6 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.11 kg / 0.25 pounds
114.0 g / 1.1 N
|
| 1 mm |
|
0.29 kg / 0.63 pounds
285.0 g / 2.8 N
|
| 2 mm |
|
0.57 kg / 1.26 pounds
570.0 g / 5.6 N
|
| 3 mm |
|
0.86 kg / 1.88 pounds
855.0 g / 8.4 N
|
| 5 mm |
|
1.14 kg / 2.51 pounds
1140.0 g / 11.2 N
|
| 10 mm |
|
1.14 kg / 2.51 pounds
1140.0 g / 11.2 N
|
| 11 mm |
|
1.14 kg / 2.51 pounds
1140.0 g / 11.2 N
|
| 12 mm |
|
1.14 kg / 2.51 pounds
1140.0 g / 11.2 N
|
Table 5: Thermal resistance (stability) - power drop
MW 6x6 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.14 kg / 2.51 pounds
1140.0 g / 11.2 N
|
OK |
| 40 °C | -2.2% |
1.11 kg / 2.46 pounds
1114.9 g / 10.9 N
|
OK |
| 60 °C | -4.4% |
1.09 kg / 2.40 pounds
1089.8 g / 10.7 N
|
OK |
| 80 °C | -6.6% |
1.06 kg / 2.35 pounds
1064.8 g / 10.4 N
|
|
| 100 °C | -28.8% |
0.81 kg / 1.79 pounds
811.7 g / 8.0 N
|
Table 6: Two magnets (attraction) - field range
MW 6x6 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.32 kg / 11.74 pounds
5 995 Gs
|
0.80 kg / 1.76 pounds
799 g / 7.8 N
|
N/A |
| 1 mm |
3.70 kg / 8.17 pounds
9 220 Gs
|
0.56 kg / 1.23 pounds
556 g / 5.5 N
|
3.33 kg / 7.35 pounds
~0 Gs
|
| 2 mm |
2.44 kg / 5.37 pounds
7 476 Gs
|
0.37 kg / 0.81 pounds
365 g / 3.6 N
|
2.19 kg / 4.83 pounds
~0 Gs
|
| 3 mm |
1.55 kg / 3.42 pounds
5 968 Gs
|
0.23 kg / 0.51 pounds
233 g / 2.3 N
|
1.40 kg / 3.08 pounds
~0 Gs
|
| 5 mm |
0.61 kg / 1.35 pounds
3 755 Gs
|
0.09 kg / 0.20 pounds
92 g / 0.9 N
|
0.55 kg / 1.22 pounds
~0 Gs
|
| 10 mm |
0.08 kg / 0.17 pounds
1 330 Gs
|
0.01 kg / 0.03 pounds
12 g / 0.1 N
|
0.07 kg / 0.15 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 pounds
311 Gs
|
0.00 kg / 0.00 pounds
1 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
31 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
19 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
12 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
8 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
6 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
5 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MW 6x6 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.0 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (kinetic energy) - warning
MW 6x6 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
30.23 km/h
(8.40 m/s)
|
0.04 J | |
| 30 mm |
52.34 km/h
(14.54 m/s)
|
0.13 J | |
| 50 mm |
67.56 km/h
(18.77 m/s)
|
0.22 J | |
| 100 mm |
95.55 km/h
(26.54 m/s)
|
0.45 J |
Table 9: Coating parameters (durability)
MW 6x6 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 6x6 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 613 Mx | 16.1 µWb |
| Pc Coefficient | 0.89 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 6x6 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.14 kg | Standard |
| Water (riverbed) |
1.31 kg
(+0.17 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet holds merely a fraction of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. computer case) severely limits the holding force.
3. Heat tolerance
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.89
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths and weaknesses of rare earth magnets.
Benefits
- Their strength remains stable, and after around ten years it decreases only by ~1% (theoretically),
- Neodymium magnets are characterized by extremely resistant to loss of magnetic properties caused by magnetic disturbances,
- In other words, due to the reflective surface of gold, the element becomes visually attractive,
- Magnetic induction on the working layer of the magnet is extremely intense,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Possibility of individual forming as well as adjusting to defined needs,
- Huge importance in modern technologies – they are used in hard drives, electric drive systems, medical devices, also other advanced devices.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which enables their usage in compact constructions
Limitations
- To avoid cracks upon strong impacts, we suggest using special steel holders. Such a solution secures the magnet and simultaneously increases its durability.
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- They oxidize in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We suggest cover - magnetic mechanism, due to difficulties in creating nuts inside the magnet and complicated shapes.
- Health risk to health – tiny shards of magnets pose a threat, when accidentally swallowed, which becomes key in the context of child health protection. Additionally, small elements of these devices are able to be problematic in diagnostics medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Lifting parameters
Best holding force of the magnet in ideal parameters – what contributes to it?
- on a base made of mild steel, perfectly concentrating the magnetic flux
- possessing a thickness of min. 10 mm to ensure full flux closure
- characterized by smoothness
- with total lack of distance (no coatings)
- during detachment in a direction perpendicular to the plane
- in stable room temperature
Impact of factors on magnetic holding capacity in practice
- Gap (betwixt the magnet and the metal), as even a very small clearance (e.g. 0.5 mm) can cause a drastic drop in force by up to 50% (this also applies to varnish, corrosion or debris).
- Pull-off angle – remember that the magnet holds strongest perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the nominal value.
- Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Paper-thin metal restricts the attraction force (the magnet "punches through" it).
- Steel grade – ideal substrate is high-permeability steel. Hardened steels may attract less.
- Base smoothness – the smoother and more polished the plate, the better the adhesion and stronger the hold. Roughness acts like micro-gaps.
- Temperature influence – hot environment weakens pulling force. Exceeding the limit temperature can permanently demagnetize the magnet.
Lifting capacity was measured by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap between the magnet’s surface and the plate reduces the load capacity.
Safe handling of neodymium magnets
Immense force
Be careful. Neodymium magnets act from a distance and connect with huge force, often quicker than you can move away.
Operating temperature
Regular neodymium magnets (N-type) undergo demagnetization when the temperature goes above 80°C. The loss of strength is permanent.
Warning for allergy sufferers
Warning for allergy sufferers: The nickel-copper-nickel coating contains nickel. If redness appears, immediately stop handling magnets and use protective gear.
Bodily injuries
Danger of trauma: The attraction force is so immense that it can result in hematomas, pinching, and broken bones. Use thick gloves.
Electronic hazard
Device Safety: Strong magnets can ruin payment cards and delicate electronics (heart implants, medical aids, mechanical watches).
Phone sensors
Remember: rare earth magnets generate a field that disrupts sensitive sensors. Maintain a safe distance from your phone, device, and GPS.
No play value
Neodymium magnets are not toys. Swallowing a few magnets may result in them pinching intestinal walls, which constitutes a severe health hazard and necessitates urgent medical intervention.
Machining danger
Dust generated during grinding of magnets is self-igniting. Avoid drilling into magnets unless you are an expert.
Implant safety
Medical warning: Strong magnets can deactivate pacemakers and defibrillators. Stay away if you have medical devices.
Risk of cracking
Despite metallic appearance, neodymium is delicate and not impact-resistant. Avoid impacts, as the magnet may shatter into sharp, dangerous pieces.
