MW 6x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010094
GTIN: 5906301810933
Diameter Ø [±0,1 mm]
6 mm
Height [±0,1 mm]
6 mm
Weight
1.27 g
Magnetization Direction
↑ axial
Load capacity
1.99 kg / 19.52 N
Magnetic Induction
553.38 mT
Coating
[NiCuNi] nickel
0.68 ZŁ with VAT / pcs + price for transport
0.55 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure which magnet to buy?
Pick up the phone and ask
+48 22 499 98 98
otherwise send us a note through
contact form
the contact form page.
Weight and structure of magnetic components can be tested on our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
MW 6x6 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of gold to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as silver, to preserve them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable holding force, neodymium magnets have these key benefits:
- They do not lose their magnetism, even after nearly ten years – the loss of lifting capacity is only ~1% (theoretically),
- They show strong resistance to demagnetization from outside magnetic sources,
- Because of the lustrous layer of gold, the component looks visually appealing,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their usage potential,
- Key role in new technology industries – they are used in data storage devices, rotating machines, clinical machines as well as high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall durability,
- They lose strength at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
- Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
- Safety concern due to small fragments may arise, in case of ingestion, which is crucial in the family environments. Furthermore, minuscule fragments from these magnets may complicate medical imaging if inside the body,
- In cases of tight budgets, neodymium magnet cost may be a barrier,
Maximum holding power of the magnet – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, determined under optimal conditions, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
What influences lifting capacity in practice
Practical lifting force is dependent on factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the lifting capacity.
Handle Neodymium Magnets with Caution
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Maintain neodymium magnets far from children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Magnets made of neodymium are particularly fragile, which leads to damage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Keep neodymium magnets away from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Safety rules!
To show why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.